Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 187 (1993), S. 17-26 
    ISSN: 1432-0568
    Keywords: Cell migration ; Neural crest ; Melanoblasts ; Myogenic cells ; Fibronectin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In avian embryos, the migration behaviour of several cell populations, melanoblasts, Schwann cells, myogenic cells and axons after application of antibodies directed against the cell-attachment fragment of fibronectin (α-CAF) was investigated. The migration of the different cell types was influenced in different ways. 1. Epidermal melanoblasts did not colonize areas into which the antibody had been injected, i.e. distal to the grafting site. They frequently spread proximally to the back and neck, sometimes even as far as to the ipsilateral leg. When grafted to the dorsal side of the wing bud, melanoblasts never spread to the ventral side after injection of the antibody. Non-epidermal melanoblasts continued to migrate distally. 2. Grafted Schwann cells and host axons were not noticeably affected by the antibody injections. Both were found proximally and far distally to the grafting site, i.e. also within the injected area. 3. Myogenic cells were immobilized near the grafting site, where they differentiated biochemically, but sometimes only partially underwent fusion into myotubes. They participated in the formation of host muscle blastemas only immediately adjacent to the non-migratory cell population of the graft such as fibroblasts and cartilage. 4. The injected antibody could be localized up to 5 h after the application in the distal third of the limb bud. We conclude that migrating cell populations show differences in their fibronectin-dependence which probably reflect their use of fibronectin during migration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Key words Nuchal translucency ; Trisomy 16 ; Trisomy 21 ; Trisomy 18 ; Trisomy 13
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  An increase in the nuchal translucency that can be detected at 10–14 weeks of gestation by ultrasound forms the basis for a screening test for chromosomal abnormality. Several mechanisms leading to this increase in skin thickness have been proposed, including changes of the extracellular matrix, cardiac defects and abnormalities of the large vessels. This study examines the composition of the extracellular matrix of the skin in gestational age-matched fetuses with trisomy 21, 18 and 13 from 12–18 weeks. Immunohistochemistry was applied with monoclonal and polyclonal antibodies against collagen type I, III, IV, V and VI and against laminin and fibronectin. Collagen type VI gene expression was further studied by in situ hybridization to detect differences in expression patterns of COL6A1, COL6A3 and COL1A1 between normal fetuses and those with trisomy 21. The ultrastructure of tissue samples was studied by transmission electron microscopy (TEM) and additionally by immunogold TEM. Further, we examined the morphology of the skin in an animal model for Down’s syndrome, the murine trisomy 16, by light and TEM. The dermis of trisomy 21 fetuses was richer in collagen type VI than that of normal fetuses and other trisomies, and COL6A1, located on chromosome 21, was expressed in a wider area than COL6A3, which is located on chromosome 2. Collagen type I was less abundant in the skin of trisomy 18 fetuses, while the skin of all three trisomies contained a dense network of collagen type III and V in comparison with normal fetuses. Collagen type IV, of which two genes are located on chromosome 13, was expressed in the basement membranes of the skin in all fetuses and additionally in the dermal fibroblasts only of trisomy 13 fetuses. Likewise, laminin was present in all basement membranes of normal and trisomic fetuses as well as in dermal fibroblasts of fetuses with trisomy 18. LAMA1 and LAMA3 genes are located on chromosome 18. Dermal cysts were found in the skin of trisomy 18 and 13, but not in trisomy 21 and normal fetuses. Ultrastructural findings showed that an extracellular precipitate containing glycosaminoglycans was regularly present in the skin of trisomy 21 fetuses and murine trisomy 16 embryos. In conclusion, this study suggests that the skin edema in fetal trisomies is characterized by specific alterations of the extracellular matrix that may be attributed to gene dosage effects as a result of a genetic imbalance due to the condition of fetal trisomy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...