Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Keywords Glucose transporters  (1)
  • Laserskalpell  (1)
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Glucose transporters ; GLUT1 ; glucose ; deoxyglucose ; deoxyglucose 6-phosphate ; glucose 6-phosphate ; hexose 6-phosphate ; skeletal muscle ; myocyte ; diabetes mellitus.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Exposure of rat skeletal muscle and skeletal muscle cell lines to high glucose levels results in a time- and dose-dependent reduction of the rate of hexose uptake, paralleled by a reduction in the plasma membrane density of glucose transporters. The mechanism of this process was investigated in cultured L8 myocytes. Low concentrations (0.5–2.0 mmol/l) of deoxyglucose mimicked the downregulatory action of 20 mmol/l glucose both regarding the time-course and magnitude of the effect, but in an irreversible manner. A dose-dependent relationship between intracellular accumulation of deoxyglucose 6-phosphate and the magnitude of the downregulatory response was observed. Depletion of intracellular deoxyglucose 6-phosphate restored the rate of hexose transport to the control level. The reduction of hexose transport activity by deoxyglucose occurred independently of ATP depletion which by itself produced the opposite effect. The effects of deoxyglucose and high glucose on hexose transport were associated with reduced transport maximal velocity and GLUT1 transporter abundance in the plasma membranes of myocytes, as assessed by cell surface biotinylation. The reduction of myocyte GLUT1 mRNA content, observed after exposure to high glucose, did not accompany the transport downregulatory action of deoxyglucose. We suggest that hexose 6-phosphate is the mediator of the downregulatory signal for subcellular redistribution of GLUT1 in L8 myocytes. The signal responsible for reducing the GLUT1 mRNA level may be related to glucose metabolites downstream of the hexokinase reaction. [Diabetologia (1997) 40: 30–39]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Langenbeck's archives of surgery 337 (1974), S. 671-673 
    ISSN: 1435-2451
    Keywords: Laser technique ; Laser Scalpel ; Intensive Care ; Laser Absorption Spectroscopy ; Lasertechnik ; Laserskalpell ; Intensivpflege ; Laserabsorptionsspektroskopie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Ein für die Routine brauchbares Laserskalpell konnte bisher aus technischen Gründen noch nicht entwickelt werden. Die Koagulation von Schnittflächen parenchymatöser Organe und die Verschorfung blutender Ulcers zeigte im Tierexperiment gute Ergebnisse. Es wird die Möglichkeit der Vaporisation von Melanomen, Verödung von Hämangiomen und Varicen sowie der Verschweißung von Knochen angesprochen. Außerdem wird über die räumliche Darstellung von Röntgenbildern und die Überwachung von Stoffwechselvorgiingen in der Intensivpflege durch die Laser-Absorptions-Spektroskopie berichtet.
    Notes: Summary For technical reasons it has hitherto not been possible to develop a laser scalpel suitable for routine surgery. In animal experiments good results have been obtained with the coagulation of incisions in parenchymatous organs and in the searing of ulcers. The possibilities of vapourizing melanomas, coagulating haemangiomas and varicose veins, and fusing bones are touched on. In addition, the three-dimensional projection of X-ray pictures and the application of laser absorption spectroscopy to the monitoring of metabolic processes in intensive care are reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...