Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 10 (1993), S. 399-427 
    ISSN: 1432-0541
    Keywords: Knapsack problems ; Computational geometry ; Convexity ; Dynamic programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract We study a variety of geometric versions of the classical knapsack problem. In particular, we consider the following “fence enclosure” problem: given a setS ofn points in the plane with valuesv i ≥ 0, we wish to enclose a subset of the points with a fence (a simple closed curve) in order to maximize the “value” of the enclosure. The value of the enclosure is defined to be the sum of the values of the enclosed points minus the cost of the fence. We consider various versions of the problem, such as allowingS to consist of points and/or simple polygons. Other versions of the problems are obtained by restricting the total amount of fence available and also allowing the enclosure to consist of at mostM connected components. When there is an upper bound on the length of fence available, we show that the problem is NP-complete. We also provide polynomial-time algorithms for many versions of the fence problem when an unrestricted amount of fence is available.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...