Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 46 (1996), S. 1133-1150 
    ISSN: 1572-8943
    Keywords: NLO chromophores ; photorefractive materials ; TGA/MS ; thermal stability ; thermogravimetric analysis-mass spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Optical data storage is poised to benefit from a new class of advanced polymeric materials engineered to exhibit photorefractivity. Likewise, the transmission and processing of data will also benefit from a related class of materials with electro-optic activity. Organic chromophores are critical constituents of these materials which function due to a change of index of refraction in response to an electric field. However, a number of materials and processing problems remain to be solved before devices incorporating these optically nonlinear chromophores are practical. For example, for electrooptical applications the NLO waveguide should be able to withstand short duration processing temperatures in excess of 300°C and long duration use temperatures of at least 80°C. The requirement for thermochemical stability follows from the need to implement highT g matrices to provide stability of the orientational or polar order required for long-term device performance and reliability. As a result, the thermal stability of chromophores is now more closely evaluated in addition to their transparency and optical nonlinearity properties. Some chromophore classes, such as the azo dyes studied here, have attractive properties for these applications but further enhancements in overall properties are needed. Identification of the fundamental chemical processes in thermal decomposition of these dyes should lead to introduction of structural changes which provide better stability. Here thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA/MS) is used to provide an assay of thermochemical stability with an added benefit that insight into the mechanisms of thermal decomposition may by identified. In this initial study diaryl substitution of the amine in derivatives of 4-amino-4′-nitroazobenzene was observed to greatly enhance thermal stability relative to dialkyl substitution. Substitution of phenyl for alkyl eliminates structural features involved in the most facile degradation mechanism available to the alkyl derivative.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 3 (1992), S. 211-217 
    ISSN: 1042-7147
    Keywords: LC polymers ; LC elastomers ; Ferroelectricity ; Piezoelectricity ; Nonlinear optics ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes the rational design and structure-property relations in three different types of polar LC polymers with interesting material properties, as follows. (i) Chiral LC polymers, which are functionalized with crosslinkable groups, can be converted into LC elastomers with chiral smectic C* phases. The mechanical orientability of these elastomers leads to new piezoelectric materials. (ii) The curing (dense crosslinking) of a polymer matrix provides one possibility of stabilizing the polar order of dye molecules, which is necessary for frequency doubling. Additionally, LC phases can help to stabilize this polar structure, which leads to large and stable nonlinear optical coefficients. (iii) Polymer analogous esterifications offer a convenient method for the synthesis of chiral smectic C* polymers with large ferrolectric polarizations.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...