Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 23 (1994), S. 377-386 
    ISSN: 1572-879X
    Keywords: Oxidative coupling of methane ; LaF3 ; La2O3 ; rhombohedral LaOF
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We studied the oxidative coupling of methane over the LaF3/La2O3 (50∶50) catalyst. The catalyst was found active even at 873 K. At 1023 K, the C2 yield was 12.7% at 26.0% CH4 conversion and 49.1% C2 selectivity. It was found to be stable and had a lifetime not less than 50 h at 1023 K. The catalyst was effective in C2H6 conversion to C2H4. XRD results indicated that the catalyst was mainly rhombohedral LaOF. It is suggested that the catalyst has ample stoichiometric defects and generates active oxygen sites suitable for methane dehydrogenation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 27 (1994), S. 199-206 
    ISSN: 1572-879X
    Keywords: pulse reaction ; NiO/Al2O3 catalysts ; methane activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Pulse studies of the interaction of CH4 and NiO/Al2O3 catalysts at 500°C indicate that CH4 adsorption on reduced nickel sites is a key step for CH4 oxidative conversion. On an oxygen-rich surface, CH4 conversion is low and the selectivity of CO2 is higher than that of CO. With the consumption of surface oxygen, CO selectivity increases while the CO2 selectivity falls. The conversion of CH4 is small at 500°C when a pulse of CH4/O2 (CH4∶O2=2∶1) is introduced to the partially reduced catalyst, indicating that CH4 and O2 adsorption are competitive steps and the adsorption of O2 is more favorable than CH4 adsorption
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...