Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key words Soil organic matter ; Mountain soils ; Land use ; Deforestation ; Soil management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Changes in soil management practices influence the amount, quality and turnover of soil organic matter (SOM). Our objective was to study the effects of deforestation followed by pasture establishment on SOM quantity, quality and turnover in mountain soils of the Sui Checti valley in the Alay Range, Kyrgyzia. This objective was approached by analysis of total organic C (TOC), N, lignin-derived phenols, and neutral sugars in soil samples and primary particle-size soil fractions. Pasture installation led to a loss of about 30% TOC compared with the native Juniperus turkestanica forests. The pasture soils accumulated about 20% N, due to inputs via animal excrement. A change in land use from forest to pasture mainly affected the SOM bound to the silt fraction; there was more microbial decomposition in the pasture than in the forest silt fraction, as indicated by lower yields of lignin and carbohydrates, and also by a more advanced oxidative lignin side-chain oxidation and higher values of plant : microbial sugar ratios. The ratio of arabinose : xylose was indicative of the removal of carbohydrates when the original forest was replaced by pasture, and we conclude that this can be used as an indicator of deforestation. The accumulation of lignin and its low humification within the forest floor could be due to the extremely cold winter and dry summer climate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...