Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Respiration  (2)
  • Leaf nitrogen  (1)
  • 1
    ISSN: 1432-1939
    Keywords: Leaf nitrogen ; Photoinhibition ; Photosynthetic acclimation ; Respiration ; Sun/shade adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Photosynthetic acclimation to 5 light environments ranging from 2 to 60% full sun was determined in Alocasia macrorrhiza, a shade tolerant species from tropical forest understories, and Colocasia esculenta, a cultivated species which occurs naturally in open marshy areas. Photosynthetic capacities of both species increased nearly 3 fold with increased photon flux density (PFD). In a given environment, however, photosynthetic capacities of C. esculenta were double those of A. macrorrhiza. Stomatal limitations explained only a small part of this difference. Respiration rates and estimated biochemical capacities increased in parallel to photosynthetic capacity. No differences were observed either between species or environments in the ratio of RuBP regeneration capacity to carboxylation capacity as determined from the CO2 dependence response of photosynthesis. Quantum yields of both species decreased only slightly with increasing growth PFD, providing little evidence for photoinhibition at high PFD. The results are discussed in terms of the mechanisms of and limitations on acclimation in these two species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 86 (1991), S. 447-453 
    ISSN: 1432-1939
    Keywords: Construction cost ; Cost/benefit analysis ; Maintenance cost ; Respiration ; Sun/shade acclimation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Photosynthetic capacities and respiration rates of Alocasia macrorrhiza leaves were measured for 4 weeks following reciprocal transfers between high (20% of full sun) and low (1% of full sun) light environments. Photosynthetic capacities and respiration rates of mature, high-light leaves were 1.7 and 4.5 times those of low-light leaves, respectively. Following transfer, respiration rates adjusted within 1 week to those characteristic of plants grown in the new environment. By contrast, photosynthetic capacities either did not adjust or changed only slowly following transfer. Most of the difference in respiration between high- and low-light leaves was related to the carbohydrate status as determined by the daily PFD and little was directly related to the maintenance costs of the photosynthetic apparatus. Leaf construction cost was directly proportional to maximum photosynthetic capacity. Consequently, although daily carbon gain per unit leaf area was the same for low-light and high to low-light transferred plants within a week after transfer, the carbon return per unit of carbon investment in the leaves remained lower in the high to low transfer plants throughout the 4 week measurement period. Conversely, in high-light, the low leaf construction cost of the low to high-light transferred plants resulted in carbon gain per unit investment just as high as that of the high-light plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...