Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 86 (1989), S. 5-18 
    ISSN: 1573-4919
    Keywords: collagen genes ; transcriptional and posttranscriptional control ; chromatin ; cis- and trans-acting factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Collagens are a structurally and functionally heterogenous group of proteins encoded by a family of genes that share evolutionary history. Collagen gene expression is regulated both in developmental, tissue-specific manners as well as in response to a variety of biologic and pharmacologic inducers. In the present review we have attempted to synthesize a conceptual overview of the available information from studies aimed at deciphering the molecular mechanisms of collagen gene expression. We have chosen to focus our discussion mainly, although not exclusively, to observations relating to type I collagen gene for a number of practical reasons. The underlying theme that emerges from this survey of the literature is that the regulation of collagen gene expression is complex, utilizing transcriptional, posttranscriptional and translational mechanisms. Although the transcriptional control mechanisms that involve activation and modulation of collagen gene transcription by RNA polymerase 11 appear to predominate, preferential stabilization of collagen mRNAs and modulation of translational discrimination appear to play significant roles in the regulation of collagen biosynthesis under some physiological situations. Molecular organization of the regulatory regions of collagen genes reveal a mosaic of subdomains with overlapping sequence motifs, involved in positive and negative transcriptional regulation. The precise identity of the cis-acting subdomains of the promoter/enhancer-proximal DNA of collagen gene and how they interact with the trans-acting nuclear protein(s) have yet to be elucidated and will remain the focus of future studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have previously shown that recombinant human osteogenic protein-1 (rhOP-1), a bone morphogenetic protein member of the TGF-β superfamily, can induce new bone formation when implanted with an appropriate carrier at subcutaneous sites in rats and can restore completely large diaphyseal segmental defects in laboratory animals. The role of OP-1 in the early events of bone induction viz, chemotaxis of phagocytic leukocytes, and fibroblastic mesenchymal cells is currently unknown. In the present study, we examined the effect of rhOP-1 on chemotaxis of phagocytic leukocytes (human neutrophils and monocytes) and fibroblastic mesenchymal cells (infant foreskin fibroblasts). Since OP-1 is structurally related to TGF-β1, we assessed the effects of OP-1 on several other fibroblast functions (in addition to chemotaxis) known to be modulated by TGF-β1. Our results demonstrated that rhOP-1, like TGF-β1, is a potent chemoattractant for human neutrophils, monocytes, and fibroblasts. However, in contrast to TGF-β1, OP-1 does not to stimulate fibroblast mitogenesis, matrix synthesis [collagen and hyaluronic acid (hyaluronan)], or production of tissue inhibitor of metalloproteinase (TIMP), i.e., fibroblast functions associated with fibrogenesis. These results clearly demonstrate a dichotomy between these two members of the TGF-β superfamily with regard to fibrogenic effects on fibroblasts but a similarity in their chemotactic properties. © 1994 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...