Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Dinitrogen fixation ; Plant functional types ; legumes ; Nutrient limitation ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P 〈 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (〉98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: BIODEPTH ; decomposition ; earthworms ; legumes ; microbial biomass ; plant species richness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Biologie in unserer Zeit 23 (1993), S. 353-355 
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Gemeint sind hier die echten Polsterpflanzen, wie Werner Rauh [5] sie definierte; Pflanzen, die auch im Gewächshaus oder vom Gletscherwasser ins Tiefland verspült, ihren polsterförmigen Wuchs beibehalten -also genotypische Polster. Im Gegensatz dazu verlieren von Weidetieren polsterförmig „geformte“ Pflanzen beim Aussetzen der Beweidung sofort ihre Polsterform: Dies sind von der Umwelt geformte Polster, phänotypische Polster.Auffällig ist, daß Polsterpflanzen in windarmen Gegenden, beispielsweise in tropischen Hochgebirgen, weitgehend fehlen. In polaren Regionen sind sie auf der Südhalbkugel mit den viel höheren Windgeschwindigkeiten häufiger anzutreffen als im Norden. Unter windarmen Bedingungen überwiegen die Nachteile des gedrungenen Wuchses dessen Vorteile. Geschlossene Pflanzendecken wie Rasen und Wälder entwickeln üblicherweise einen Blattflächenindex von 4 bis 8 m2 Blattfläche pro m2 Boden. Polsterpflanzen bringen es auf der von ihnen besetzten Grundfläche nur auf einen Blattflächenindex ovn 1 bis maximal 2 m2 pro m2 [2]. Damit sind diese Pflanzen, sobald günstigere Wachstumsbedingungen herrsche, hoffnungslos unterlegen und werden verdrängt. Die wegen ihrer Symmetrie auffälligsten Polster sind Halbkugelpolster mit einer Pfahlwurzel. deren grüne Kuppel sich durch endständiges Triebwachstum jährlich nur um wenige Millimeter vergrößert.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Biologie in unserer Zeit 29 (1999), S. 353-363 
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Die Verbrennung von großteils fossilen Kohlenstoffverbindungen hat seit Beginn der industriellen Revolution einen Anstieg der CO2-Konzentration in der Atmosphäre von nahezu 30% bewirkt. Aus im Polareis eingeschlossenen Luftblasen ist bekannt, daß sich die Konzentration von 190 ppm (parts per million) zum Höhepunkt der letzten Eiszeit auf etwa 290 ppm um 1800 und heute durchschnittlich 364 ppm erhöht hat ‘;42’. Seit einigen Jahrzehnten ist die Zunahme der CO2-Konzentration in der Atomosphäre durch kontinuierliche Messungen belegt. Aufgrund der Eisbohrkerne wissen wir auch, daß der CO2-Pegel im Laufe der letzten 45000 Jahre immer zwischen 1990 und 290 ppm pendelte und nie aus dieser 100 ppm Bandlbreite ausbrach (Abbildung 1).
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...