Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 10 (1989), S. 177-188 
    ISSN: 0192-253X
    Keywords: Methoprene ; Steroid ; EIPs ; Acetylcholinesterase ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Drosophila Kc cells are ecdysone-responsive: hormone treatment leads rapidly to increased synthesis of several ecdysone-inducible polypeptides (EIPs) and to commitment to eventual proliferative arrest. Later, the treated cells undergo morphological transformation, cease to proliferate, and develop new enzymatic activities, notably, acetylcholineslerase (AChE) activity. These responses have proven useful as models for studying ecdysone action. Here we report the sensitivity of Kc cells to another important insect developmental regulator - juvenile hormone (JH). We find that JH inhibits some, but not all, aspects of the ecdysone response. When Kc cells are treated with ecdysone in the presence of either natural JHs or synthetic analogues, the morphological and proliferative responses are inhibited and AChE induction is blocked. Most striking is that JHs protect the cells from the rapid proliferative commitment induced by ecdysone alone. The JH effects exhibit reasonable dose-response curves with half-maximal responses occurring at very low JH concentrations. Nonetheless, even at high JH concentrations the inhibitory effects are incomplete. It is interesting that EIP induction appears to be refractory to JH. It seems clear that JH is not simply a generalized inhibitor of ecdysone-induced responses.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 320-331 
    ISSN: 0192-253X
    Keywords: Drosophila melanogaster ; ecdysone ; steroid ; Eip28/29 ; EcREs ; lacZ ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The Eip28/29 gene of Drosophila is an example of a tissue- and stage-specific ecdysone-responsive gene. Its diverse patterns of expression during the third larval instar and a synopsis of those patterns in terms of expression groups have been reported previously. Here we have studied the expression (in transgenic flies) of reporter genes controlled by Eip28/29-derived flanking DNA. During the middle and late third instar, most tissues exhibit normal expression patterns when controlled by one of two classes of regulatory sequences. Class A sequences include only 657 Np of 5′ flanking DNA from Eip28/29. Class B sequences include an extended 3′ flanking region and a minimal (≤93 Np) 5′ flanking region. The class B sequences include all those elements known to be important for ecdvsone induction in cultured cells. They are sufficient to direct the normal premetamorphic induction of Eip28/29 in the lymph glands, hemocytes, proventriculus, and Malpighian tubules. This is consistent with our suggestion that Kc cells are derived from embryonic hematopoietic cells. It is remarkable that the epidermis requires only class A sequences. These are sufficient to up-regulate expression at medinstar and to down-regulate expression at metamorphosis. It follows that the epidermis uses EcREs distinct from those that function in Kc cells. It is possible that the Upstream EcRE, which is nearly silent in Kc cells, is active in the epidermis. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...