Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: tumor cells ; cell-cell interaction ; desmoplasia ; extracellular matrix ; stroma reaction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of various normal and malignant human cells on the level of collagen synthesis by human fibroblasts was tested in coculture. As revealed by immunoperoxidase staining, in cocultures with breast adenocarcinoma cells (MCF7, SA52, T47D) fibroblasts synthesized collagen while tumor cells did not. Fibroblasts displayed increased collagen production without change in the overall protein synthesis. Several other types of cells derived from normal human tissues (keratinocytes, normal mammary cells) or from fibrosarcoma, melanoma, cervical carcinoma, choriocarcinoma, or other breast adenocarcinoma (SW613, MDA, BT20) did not affect collagen synthesis of fibroblasts. Although to a lesser extent, this stimulating effect was reproduced by using the conditioned medium (CM) of the active cells but not with CM of the other cell types. A slight stimulation was also obtained when tumoral MCF7 cells and fibroblasts shared the same medium but were physically separated, suggesting that close contact was required for optimal stimulation of collagen synthesis. The collagen synthesis stimulating activity was not related to a modification of fibroblast proliferation rate. The production of collagen types I, III, and VI and fibronectin were increased in cocultures of fibroblasts with MCF7 cells. The increased synthesis of collagen types I and III and fibronectin was paralleled by similar changes in the steady-state level of their mRNAs. On the contrary, the increased production of collagen type VI appeared regulated at a post-transcriptional level.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Bovine vascular endothelial cells continuously maintained and grown in the presence of FGF adopt at confluence the configuration of a cell monolayer composed of contact-inhibited cells which do not overgrow each other and which are highly flattened and closely apposed. Such cultures exhibit structural and morphological characteristics similar to those observed with their in vivo counterparts. These include the production of an extracellular matrix consisting mostly of basement membrane collagen and fibronectin localized exclusively beneath the cell monolayer, but not on top of it, as well as a nonthrombogenic, blood-compatible apical cell surface. Removal of fibroblast growth factor (FGF) from adult bovine aortic endothelial cell (ABAE) cultures results within three passages in the loss by the cells of their characteristic contact-inhibited morphology. The cells, which during their logarithmic growth phase divide with a greatly increased doubling time, become larger and more elongated. Confluent cultures, instead of adopting the morphology of a contact inhibited cell monolayer, are now composed of overgrowing cells. Parallel with the morphological alterations taking place within the culture, the cells also lose the polarity of cell surfaces characteristics of the vascular endothelium. Formation of an extracellular matrix composed primarily of fibronectin and collagen types I, III, and IV is observed on both the apical and basal cell surfaces. Platelets which previously did not bind to the apical cell surface now become capable of binding to it. CSP-60, a major cell surface protein present in highly confluent and contact-inhibited vascular endothelial cell cultures, can no longer be detected. Exposure of confluent endothelial cell cultures, maintained in the absence of FGF to medium conditioned by cells which had been grown in the presence of FGF, but maintained in its absence upon reaching confluence led, within four to eight days, to a reversion of the altered phenotype. This medium has little or no mitogenic activity and retains a full activity in the absence of serum or after depletion of its fibronectin content by affinity chromatography on a gelatin-Sepharose column. Cultures which were previously composed of cells growing in multiple layers reorganized into a single cell monolayer composed of closely apposed and highly flattened cells. The cultures thereby regained the contact-inhibited morphology characteristic of the vascular endothelium. Concomitant with this cellular reorganization, the extracellular matrix disappeared from the apical cell surface, the cells regained their nonthrombogenic properties, and CSP-60 reappeared as one of the major cell surface proteins. These results suggest that vascular endothelial cells secrete a soluble factor(s) which can restore the normal morphology and function lost following removal of FGF from the medium. Such a factor(s) may be involved in maintaining the differentiated state of the vascular endothelium.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 107 (1981), S. 171-183 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 133 (1987), S. 95-102 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 165 (1995), S. 475-483 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The initiation of the angiogenic process requires a locally confined and time-limited proteolysis of the basement membrane (BM) components at the site of new vessel sprout. Gelatinase A, a member of the matrix metalloproteinase family, degrades BM type IV collagen and is involved in the BM breakdown by migrating tumor cells and endothelial cells (EC). Gelatinase A is synthesized as latent proenzyme and must be activated in order to express its proteolytic activity. A plasma membrane-dependent mechanism of activation has been described for several tumor and transformed cell lines. In the present study, we show that latent (72 kD) and mature (62-59 kD) froms of gelatinase A are present in EC membrane fraction from Triton X-114 extract while only latent form is found in the cytosolic fraction. The incubation of EC membrane fraction with exogenous latent gelatinase A resulted in a significant activation giving rise to 62-59 kD mature forms. 12-O-tetradecanoylphorbol-13-acetate (TPA), a strong potentiator of angiogenesis in vitro and in vivo, increases the amount of both latent and activated forms of gelatinase A in EC membrane fraction as well as the ability of this latter fraction to activate exogenous latent gelatinase A. We show that the mRNA transcript coding for the membrane-integrated MMP, the MT-MMP, previously described as a potential gelatinase A activator in invasive tumor cells is also expressed in vascular EC and is regulated through a TPA sensitive process. This enzyme may be responsible for membrane-dependent gelatinase A activation in normal vascular EC and may therefore be a determinant in the control of BM proteolysis during angiogenesis. © 1995 Wiley-Liss Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...