Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 35-47 
    ISSN: 0886-1544
    Keywords: microbeam ; microtubules ; nucleus ; cytoskeleton ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: During hyphal tip growth in the fungus Basidiobolus magnus, nuclei normally maintain a constant distance from the advancing cell apex by continuously migrating forward. It is not known whether the mechanism that produces nuclear movement also mediates nuclear positioning, or whether these two processes are under separate control. By irradiating small cytoplasmic regions with an ultraviolet microbeam, the coordination between movement and positioning could be disrupted. Regardless of the distance of the target from the nucleus, anterior irradiations (those ahead of the nucleus) caused the nucleus to stop or move backwards, whereas posterior (behind the nucleus) irradiations caused an acceleration in the nuclear velocity. The nucleus retained its ability to move following irradiation, so there was only loss of control over normal positioning. These results suggest that movement and positioning are mediated by different mechanisms. Quantitative microtubule analysis demonstrated that microtubules in the target region had been depolymerized, but in other regions of the cell they were apparently normal. We suggest that the depolymerization of microtubules affects nuclear movement by altering the tensile strength of the cytoplasm, and that cytoskeletal tension mediate nuclear positioning.We also found that accelerated nuclear movement could occur when most of the microtubules surrounding the nucleus were depolymerized. A comparison of the microtubule population surrounding the nucleus in unirradiated versus irradiated cells suggested that microtubules move with nuclei. Therefore, the nucleus does not appear to move via a direct interaction with microtubules.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 4 (1986), S. 347-360 
    ISSN: 0741-0581
    Keywords: Microtubules ; Fungus ; Embedment-free sections ; Freeze substitution ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Hyphae of the fungus Basidiobolus magnus were embedded in extractable polyethylene glycol (PEG) or diethylene glycol distearate (DGD) to prepare embedment-free sections in order to seek components of the cytoskeleton that may be obscured in epoxy-embedded sections. All methods showed that hyphae possess an intricate filamentous matrix, which is apparently unoriented. However, the appearance of the cytoskeleton depended on the embedding medium, the solvent used during embedding, and whether cells were fixed by conventional fixation or freeze-substitution. PEG proved to be the best embedding medium for fungal cells because DGD caused cell shrinkage and produced a more lamellar than filamentous matrix. Also, the cytoskeletal filaments were clearer in freeze-substituted cells than in conventionally-fixed cells. Since we failed to find microtubules in the embedment-free sections, we re-embedded cells in Epon to discern whether microtubules or other cytoplasmic components had changed. Neither PEG nor DGD adequately preserved microtubules as compared to regular Epon-embedded sections, and other cellular structures were significantly altered. Therefore, alternative methods need to be employed to further characterize fungal cytoskeletons.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...