Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (1)
  • 1
    ISSN: 1058-8388
    Keywords: Xenopus laevis ; Tyrosine kinases ; Embryonic development ; Neural crest ; Eph ; Csk ; FGFR ; PDGFR ; Tyk2 ; Klg ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Growth factors and their receptors play an important role in controlling cellular proliferation, migration, and differentiation during vertebrate embryogenesis. We have used the reverse transcription-polymerase chain reaction to survey the repertoire of receptor tyrosine kinases (TK) expressed during early embryogenesis of Xenopus laevis. Twelve distinct Xenopus TK cDNA classes were identified among a total of 352 cDNAs screened. A single TK cDNA class has been described previously and encodes the fibroblast growth factor receptor FGFR-A1. The remaining 11 TK cDNA classes appear to encode novel genes of the FGFR, platelet-derived growth factor receptor (PDGFR), Eph, Csk, Tyk2, and Klg subfamilies. By RNase protection assays, Xenopus TK mRNAs are rare transcripts (≤107 mRNA mol-ecules/embryo), and are usually found to be expressed also maternally in the embryo. Most Xenopus TK genes examined by whole-mount in situ hybridization were expressed widely in tissues derived from multiple germ layers. Two Eck-related genes, however, were found to be restricted in their expression to neural crest of the second (hyoid) arch. Our findings are consistent with the proposed function of TKs in the regulation of specification and differentiation of embryonic tissues. ©1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...