Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: chemotaxis ; cell motility ; cellular polarity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Amebae of Dictyostelium discoideum normally chemotax to aggregation centers by assessing the direction of outwardly moving, nondissipating waves of the chemoattractant cAMP. However, D. discoideum amebae can also assess the direction of a relatively stable spatial gradient. We demonstrate that amebae migrating towards the “source” of a stable, spatial gradient move faster, extend fewer pseudopodia, and turn less frequently than amebae migrating away from the “source” in the same spatial gradient. In addition, amebae extend lateral pseudopods in a polarized fashion from the anterior half of the cell, and do so as frequently towards the source as away from the source. However, those formed towards the source more often produce a turn than those formed away from the source. These results suggest that there may be two decision-making systems, one localized in the pseudopods, and one along the entire cell body; they support the suggestion that Dictyostelium amebae may employ a temporal mechanism to assess the direction of a spatial gradient of chemoattractant.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0886-1544
    Keywords: cell motility ; sensory transduction ; slime mold ; pseudopod formation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In an aggregation territory of Dictyostelium discoideum, outwardly moving, nondissipating waves of the chemoattractant cAMP sweep across each ameba. At the front of each wave, an ameba experiences an increasing temporal and a positive spatial gradient of cAMP. At the back of a wave, an ameba experiences a decreasing temporal and a negative spatial gradient of cAMP. Employing a perfusion chamber, we have mimicked the temporal dynamics of these waves in the absence of a spatial gradient and demonstrated that the frequency of lateral pseudopod formation and the frequency of turning are dramatically affected by the direction and dynamics of the temporal gradient. In addition, since an ameba will move in a directed fashion up a shallow, nonpulsatile gradient of cAMP, we also mimicked the increasing temporal gradient generated by an ameba moving up a shallow spatial gradient. The frequency of lateral pseudopod formation and the frequency of turning were depressed. Together, these results demonstrate that amebae can assess the direction of a temporal gradient of chemoattractant in the absence of a spatial gradient and alter both the frequency of pseudopod extension and turning, accordingly. Although these results do not rule out the involvement of a spatial mechanism in assessing a spatial gradient, they strongly suggest that the temporal dynamics of a cAMP wave or the temporal gradient generated by an ameba moving through a spatial gradient may play a major role in chemotaxis.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0886-1544
    Keywords: Ascaris sperm ; motility ; computer-assisted motion analysis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Computer-assisted methods have been employed to obtain a high resolution description of pseudopod expansion, cellular translocation, and the subcellular dynamics of MSP fiber complexes in the motile sperm of the nematode Ascaris suum. Although Ascaris sperm translocating in a straight line or along a curved path do not retract their pseudopod or significantly alter pseudopod shape, they move in a cyclic fashion, with an average period between velocity peaks of 0.35 × 0.05 min, which is independent of the forward velocity of sperm translocation. Expansion is confined to a central zone at the distal edge of the pseudopod for sperm translocating in a straight line and to a left-handed or right-handed lateral zone in the direction of turning, for sperm translocating along a curved path. For cells translocating in a straight line, the branch points and kinks of MSP fiber complexes move in a retrograde direction in relation to the substratum at an average velocity of 11 μm per min which is independent of the forward velocity of sperm translocation. The distal (anterior) end of a fiber complex, however, moves distally at the speed of sperm translocation when it emanates from the expansion zone, but when it is displaced to a nonexpanding surface of the pseudopod, it stops moving distally. When a cell is anchored to the substratum and is, therefore, nonmotile, the velocity of fiber complexes moving in a retrograde direction doubles. The unique aspects of pseudopod and MSP fiber complex dynamics in Ascaris are compared to the dynamics of pseudopod formation and actin filament dynamics in traditional actin-based amoeboid cells, and the treadmill model for MSP polymerization is reassessed in light of the discovery that fiber complex branch points move proximally (posteriorly) at a fixed rate.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 9 (1988), S. 9-16 
    ISSN: 0886-1544
    Keywords: adaptation ; cAMP ; cell motility ; chemotaxis ; Dictyostelium discoideum ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: When developing amebae of Dictyostelium discoideum are treated with constant concentrations of cAMP above 10-8 M, the average rate of motility is depressed, with maximum inhibition at roughly 10-6 M. It is demonstrated that shifting the concentration of cAMP from 0 M to concentrations ranging from 10-8 to 10-6 M in a perfusion chamber results in the immediate inhibition of motility. After shifting from 0 M to 10-8 or 10-7 M, the rate of cell motility remains low, then rebounds to a higher level, exhibiting a standard adaptation response. No adaptation is exhibited after a shift from 0 M to 10-6 M, a concentration resulting in maximum inhibition. It is demonstrated that the level of inhibition and the extent of the adaptation period are dependent upon the concentration of cAMP after the shift, and that submaximal inhibition is additive. The characteristics of adaptation in this motility response are very similar to the characteristics of adaptation for the relay system and phosphorylation of the putative cAMP receptor.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 20 (1991), S. 301-315 
    ISSN: 0886-1544
    Keywords: DMIB- cells ; F-actin ; cAMP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cellular and intracellular motility are compared between normal Dictyostelium amoebae and amoebae lacking myosin IB (DMIB-). DMIB- cells generate elongated cell shapes, form particulate-free pseudopodia filled with F-actin, and exhibit an anterior bias in pseudopod extension in a fashion similar to normal amoebae. DMIB- cells also exhibit a normal response to the addition of the chemoattractant cAMP, including a depression in cellular and intracellular particle velocity, depolymerization of F-actin in pseudopodia, and a concomitant increase in cortical F-actin. DMIB- cells do, however, form lateral pseudopodia roughly three times as frequently as normal cells, turn more often, and exhibit depressed average instantaneous cell velocity. DMIB- cells also exhibit a decrease in the average instantaneous velocity of intracellular particle movement and an increase in the degree of randomness in particle direction. These findings indicate that if there is functional substitution for myosin IB by other myosin I isoforms, it is at best only partial, with myosin IB being necessary for maintenance of the normal rate and persistence of cellular translocation, suppression of lateral pseudopod formation and subsequent turning, rapid intracellular particle motility, and the normal anterograde bias of intracellular particle movement. Furthermore, it is likely that the behavioral abnormalities observed here for DMIB- cells underlie the delay in the onset of chemotactic aggregation, the increase in the time required to complete streaming, and the abnormalities in morphogenesis exhibited by DMIB- cells.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 22 (1992), S. 211-223 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A 3-dimensional dynamic image analyzing system (3D-DIAS) has been developed in which a translocating cell is optically sectioned in the z-axis within a 2 sec period; the perimeter of the cell in each section is digitized into the 3D-DIAS data file, and the digitized perimeters are wrapped in order to reconstruct the cell image in three dimensions. Using 3D-DIAS, we have obtained the first dynamic 3-dimensional description of human polymorphonuclear leukocytes (PMN) translo-cating on a glass surface. A general behavior cycle has emerged which includes two phases. In the first, an ellipsoidal PMN with significant z-axis extends anteriorly and descends to the substratum. When the ventral surface of the anterior end contacts the substratum, there is rapid anterior expansion, which correlates with velocity peaks. In the second phase, the elongate PMN stops translocating along the substratum, the anterior end lifts off of the substratum, sometimes to heights greater than the length of the PMN at the substratum, and finally the PMN retracts into an ellipsoidal morphology still capable of random protrusions. During this second phase, which correlates with velocity troughs, turning usually occurs. The degree of turning is restricted by the continuous integrity of the posterior uropod. The period of the behavior cycle varies from roughly 0.5 to 2 min between PMNs, but is relatively constant within each individual PMN. © 1992 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 23 (1992), S. 145-156 
    ISSN: 0886-1544
    Keywords: Dictyostelium ; cAMP wave ; temporal mechanism ; chemotaxis ; pseudopod formation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The instantaneous velocity plots of Dictyostelium discoideum amoebae responding to natural waves and simulated temporal waves of cAMP with periods of 7 min are highly similar. This similarity has been used to deduce the dynamics of a natural wave crossing an amoeba, and the behavior of amoebae has been characterized during the different phases of a natural wave with a computer-assisted dynamic image analyzing system. During the first ∼150 sec of the front of a natural wave, cells move persistently toward the aggregation center, with high instantaneous velocity and a decreased frequency of lateral pseudopod formation. During the last 30 sec of the front of the wave and the first 30 sec of the back of the wave, there is a “freeze” in cell shape and a dramatic depression in cell motility, pseudopod formation, and intracellular particle movement. During the last 180 sec of the back of the wave, there is a rebound in pseudopod formation, but it is random in direction and leads to no net cellular translocation. The data suggest that all of the behavior of a cell but orientation during the translocation phase is mediated by the temporal dynamics of the wave. The data also suggest that orientation toward the aggregation center occurs early in the front of the wave and that, once oriented, cells move in a blind fashion during the translocation phase. © 1992 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 10 (1988), S. 91-106 
    ISSN: 0886-1544
    Keywords: amoebic motility ; three-dimensional motility analysis ; cyclic Amp ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A computer-assisted Dynamic Morphology System (DMS) is described that allows the rapid quantitation of more than 30 parameters of motility and dynamic morphology for up to 40 amebae in parallel. This system also generates “difference pictures” for characterizing the dynamics of pseudopod formation. A 3-D DMS is described, and application of DMS to problems of motility and chemotaxis in normal and mutant cells of Dictyostelium discoideum is reviewed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 1-12 
    ISSN: 0886-1544
    Keywords: pseudopod extension ; amoebae ; uropod retraction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Employing a newly developed computer-assisted system for visualizing and quantitating cell motility in three dimensions, we have examined the 3-dimensional changes in cell shape and the dynamics of pseuodopod extension during translocation of Dictyostelium amoebae. Amoebae exhibit a 3-dimensional behavior cycle with an average period of 1.5 min. The cycle includes a transient pseudopod extension phase in the x, y axis followed by a z-axis expansion phase. Anterior pseudopod extension in the x, y axis is accompanied by a decrease in height, not by uropod retraction. The increase in height is accompanied by uropod retraction. In the pseudopod extension phase in the x, y axes, pseudopods form either anteriorly or laterally, and either on or above the substratum. Pseudopods which initially form on the substratum in almost all cases continue to expand as the anterior end of the cell. In the case of lateral pseuodopods, anteriorization leads to a turn. Approximately half of anterior pseudopod and two-thirds of lateral pseudopods which initially form above the substratum are retracted. These results suggest that pseudopod-substratum interaction plays a fundamental role in the regulation of directionality and turning in the translocation phase of the 3-dimensional behavior cycle. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 201 (1994), S. 204-205 
    ISSN: 1058-8388
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...