Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Loading rates  (1)
  • Soil conservation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 3 (1979), S. 237-270 
    ISSN: 1432-1009
    Keywords: Soil lose ; Universal soil loss equation ; Nonpoint pollution ; Water quality ; Soil conservation ; Erosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A series of computer programs designed to predict gross annual soil loss on a watershed basis by application of the Universal Soil Loss Equation (USLE) have been developed. The programs provide an easy-to-use, flexible, and standardized means of organizing base data and applying the USLE to large land areas. The programs can be used to assess and to evaluate the effects of changing land-use patterns and conservation practices on soil losses. Critical or problem areas can be readily identified. The USLE Computer Programs are a useful research tool for investigators involved in water quality management, 208 planning, or conservation research. The package of computer programs consists of three main components: data input, the Main Program, and the Totals Program. Input data include both field base data describing the watershed and corresponding values for the factors in the USLE. The Main Program calculates the average rate of soil loss (tons/ acre/yr) and the total soil loss (tons/yr) for the smallest subunit of the watershed identified as the soil unit. Also calculated is an RKLS factor, which is an indication of the erosive potential of a given soil type, slope, and slope length, under a particular rainfall regime. The Totals Program aggregates soil unit losses into progressively larger units, that is, field, farm, subwatershed, and watershed units. An example of the programs' versatility and use is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 4 (1980), S. 73-77 
    ISSN: 1432-1009
    Keywords: Nonpoint pollution ; Runoff ; Water quality ; Monitoring ; Loading rates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Paired water samples were simultaneously activated from two different vertical positions within the approach section of a flow-control structure to determine the effect of sample intake position on nonpoint runoff parameter concentrations and subsequent event loads. Suspended solids (SS), total phosphorus (TP) and organic plus exchangeable nitrogen [(Or+Ex)-N] were consistently higher throughout each runoff event when sampled from the floor of the approach section as opposed to those samples taken at midstage. Dissolved molybdate reactive phosphorus (DMRP) and ammonium (NH4-N) concentrations did not appear to be significantly affected by the vertical difference in intake position. However, the nitrate plus nitrite nitrogen [(NO3+NO2)-N] concentrations were much higher when sampled from the midstage position. Although the concentration differences between the two methods were not appreciable, when evaluated in terms of event loads, discrepancies were evident for all parameters. Midstage sampling produced event loads for SS, TP, (Or + Ex)−N, DMRP, NH4-N, and (NO3+NO2)-N that were 44,39,35,80,71, and 181%, respectively, of floor sampling loads. Differences in loads between the two methods are attributed to the midstage position, sampling less of the bed load. The correct position will depend on the objective; however, such differences should be recognized during the design phase of the monitoring program.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...