Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 136 (1991), S. 529-560 
    ISSN: 1420-9136
    Keywords: Modal summation ; broad band ; Love waves ; anelasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present an efficient scheme to compute high-frequency seismograms (up to 10 Hz) forSH-waves in a horizontally stratified medium with the mode summation method. The formalism which permits the computation of eigenvalues, eigenfunctions and related integral quantities is discussed in detail. Anelasticity is included in the model by using the variational method. Phase velocity, group velocity, energy integral and attenuation spectra of a structure enable the computation of complete strong motion seismograms, which are the basic tool for the interpretation of near-source broad-band data. Different examples computed for continental structures are discussed, where one example is the comparison between the observed transversal displacement recorded at station IVC for the November 4, Brawley 1976 earthquake and synthetic signals. In the case of a magnitudeM L =5.7 earthquake in the Friuli seismic area we apply the mode summation method to infer from waveform modeling of all three components of motion of observed data some characteristics of the source.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 143 (1994), S. 513-536 
    ISSN: 1420-9136
    Keywords: Local soil effects ; wave propagation ; numerical modelling ; seismic zonation ; seismic ground motion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Many of the numerical techniques used for seismic zonation studies treat one-dimensional structural models and/or the incidence of plane polarized body waves. These techniques are often not adequate for laterally heterogeneous structures and for sources that are not located beneath the site of interest. In such cases a more rigorous treatment of the combined effects of the source, the path and the site response is needed. This can be accomplished with a hybrid approach combining modal summation and the finite-difference technique. To demonstrate the differences between these techniques, the ground motion in the city of Benevento (Italy) is modelled. We first compare the results obtained with one-and two-dimensional structural models for vertical incidence of plane polarized body waves. These results are then compared with those obtained with the hybrid approach for two-dimensional structural models. The comparisons have allowed us to find important differences in the response obtained with the different modelling techniques. For the same site, these differences consist of strong variations in amplitude and in the shape of the spectral amplifications. For a seismic source which is not located beneath the site, vertical incidence of waves significantly overestimates the local hazard in a laterally homogeneous structure. For a laterally heterogeneous area, we can conclude that one-dimensional modelling fails to estimate the seismic hazard, whereas for a seismic source which is not located beneath the site of interest, two-dimensional modelling with vertical incidence of plane polarized body waves may not allow reliable estimates to be made of the frequency bands at which amplifications occur. The results obtained for two-dimensional structural models are used for a zonation of the city of Benevento.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...