Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 75 (1981), S. 372-379 
    ISSN: 1432-2072
    Keywords: Ethanol ; Locomotor activity ; Aerial righting reflex ; Biphasic action ; Conditioned avoidance responding ; Fenmetozole ; Apomorphine ; Shock ; Strain differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The locomotor activity of groups of three CD-1 female mice was increased by 1.0 and 2.0 g/kg ethanol, IP, was decreased during the first hour and increased during the second hour by 3.0 and 4.0 g/kg, and was decreased by 5.0 g/kg. The dose (2.0 g/kg) that caused the greatest increase in locomotor activity did not impair motor coordination, measured by the height of aerial righting in mice. Tests after oral administration of ethanol showed that the increase in locomotor activity of mice was not due to peritoneal irritation. The same dose (2.0 g/kg) did not increase the locomotor activity of C57BL/6J mice. Ethanol (0.1 to 3.0 g/kg) had no effect or decreased the locomotor activity of individual male Sprague-Dawley rats. These findings suggest that biological differences in strains and species of laboratory rodents contribute to the apparent variability of locomotor stimulation caused by ethanol. The presence or absence of an ethanol-induced increase in locomotor activity was not dependent on the sex or number of mice or rats tested. Intertrial-interval crossing by rats acquiring or performing an active avoidance task in a shuttle box was increased by ethanol. This action was dependent on the presentation of electric foot shock. Apomorphine (0.25 and 2.5 mg/kg) and fenmetozole (7.5 and 15.0 mg/kg) failed to inhibit the ethanolinduced increase in intertrial-interval crossing by rats, although these drugs have been shown previously to antagonize the ethanol-induced increase in the activity of mice ethanol treatment. The ethanol-induced increases in the spontaneous locomotor activity of CD-1 mice in photocell activity monitors and in intertrial-interval crosses in rats in a shuttle box task thus do not appear to share a common mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Scopolamine ; Spiperone ; Dopamine receptors ; Neural interactions ; Locomotor activity ; Presynaptic mechanisms ; Apomorphine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Scopolamine reversed the reduction in avoidance responding caused by spiperone and antagonized the inhibitory effects of spiperone on the behavioral actions of d-amphetamine or apomorphine. Scopolamine-induced locomotor activity was greater in 6-hydroxydopamine (6-OHDA)-treated animals than in controls. This increase was prevented by administration of α-methyltyrosine, but not by inhibition of dopamine-β-hydroxylase, indicating that this action of scopolamine was associated with presynaptic dopaminergic fibers. Therefore, the possibility that pre-synaptic dopaminergic function was the locus of the antagonism of spiperone by scopolamine was examined using drug interaction studies in 6-OHDA-treated rats. However, when 6-OHDA-treated rats were given α-methyltyrosine, scopolamine still reversed the spiperone blockade of apomorphine-induced locomotion. Although these data provided evidence for a post-synaptic action for this cholinergic blocking agent, scopolamine affected neither dopamine-stimulated adenylate cyclase activity nor 3H-spiperone binding in vitro. Furthermore, scopolamine did not alter the level of specific 3H-spiperone binding found in brain after in vivo administration. This suggests that the postsynaptic mechanism affected by scopolamine is different from the site affected by spiperone. Thus, it is concluded that scopolamine can affect both pre- or post-synaptic events associated with dopaminergic function and that both may contribute to the reversal of the actions of spiperone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...