Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MEK  (1)
  • casein kinase 2  (1)
  • cell cycle control  (1)
Material
Years
Keywords
  • 1
    ISSN: 1573-4919
    Keywords: protein kinases ; signal transduction ; cell cycle control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 286-301 
    ISSN: 0730-2312
    Keywords: heart ; development ; MAPK ; MEK ; MEKK ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The loss of ability to proliferate (terminal differentiation) and reduction in capability to resist ischemia are key phenomena observed during postnatal development of the heart. Mitogen-activated protein kinases (MAPKs) mediate signaling pathways for cell proliferation/differentiation and stress responses such as ischemia. In this study, the expression of these kinases and their associated kinases were investigated in rat heart ventricle. Extracts of 1-, 10-, 20-, 50-, and 365-day-old rat heart ventricles were probed with specific antibodies and their immunoreactivities were quantified by densitometry. Most of the mitogenic protein kinases including Raf1, RafB, Mek1, Erk2, and Rsk1 were significantly down-regulated, whereas the stress signaling kinases, such as Mlk3, Mekk1, Sek1, Mkk3, and Mapkapk2 were up-regulated in expression during postnatal development. Most MAP kinases including Erk1, JNKs, p38 Hog, as well as Rsk2, however, did not exhibit postnatal changes in expression. The proto-oncogene-encoded kinases Mos and Cot/Tpl 2 were up-regulated up to two- and four-fold, respectively, during development. Pak1, which may be involved in the regulation of cytoskeleton as well as in stress signaling, was downregulated with age, but the Pak2 isoform increased only after 50 days. All of these proteins, except RafB, were also detected in the isolated adult ventricular myocytes at comparable levels to those found in adult ventricle. Tissue distribution studies revealed that most of the protein kinases that were up-regulated during heart development tended to be preferentially expressed in heart, whereas the downregulated protein kinases were generally expressed in heart at relatively lesser amounts than in most of other tissues. J. Cell. Biochem. 71:286-301, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 328-339 
    ISSN: 0730-2312
    Keywords: insulin ; heart ; development ; PI 3-kinase ; protein kinase B ; S6 kinase ; casein kinase 2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of glucose uptake and glycogen metabolism by insulin in target organs is in part mediated through the regulation of protein-serine/ threonine kinases. In this study, the expression and phosphotransferase activity levels of some of these kinases in rat heart ventricle were measured to investigate whether they might mediate the shift in the energy dependency of the developing heart from glycogen to fatty acids. Following tail-vein injection of overnight fasted adult rats with 2 U of insulin per kg body weight, protein kinase B (PKB), the 70-kDa ribosomal S6 kinase (S6K), and casein kinase 2 (CK2) were activated (30-600%), whereas the MAP/ extracellular regulated kinases (ERK)1 and ERK2 were not stimulated under these conditions. When the expression levels of the insulin-activated kinases were probed with specific antibodies in ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats, phosphatidylinositol 3-kinase (PI3K), PKB, S6K, and CK2 were downregulated (40-60%) with age. By contrast, ventricular glycogen synthase kinase-3β (GSK3β) protein levels were maintained during postnatal development. Similar findings were obtained when the expression of these kinases was investigated in freshly isolated ventricular myocytes, where they were detected predominantly in the cytosolic fraction of the myocytes. Compared to other adult rat tissues such as brain and liver, the levels of PI3K, PKB, S6K, and GSK3β were relatively low in the heart. Even though CK2 protein and activity levels were reduced by ∼60% in 365 day as compared to 1-day-old rats, expression of CK2 in the adult heart was as high as detected in any of the other rat tissues. The high basal activities of CK2 in early neonatal heart may be associated with the proliferating state of myocytes. J. Cell. Biochem. 71:328-339, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...