Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Adsorption 6 (2000), S. 5-13 
    ISSN: 1572-8757
    Keywords: multicomponent adsorption ; diffusion ; Maxwell-Stefan model ; linear driving force approximation ; Langmuir isotherm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract An approximate rate equation based on a film-model representation of diffusional mass transfer is developed to describe the kinetics of multicomponent adsorption. The model describes mass transfer as a pseudo-steady state diffusion process through a flat film of thickness equal to one fifth of the particle radius. Starting with an irreversible thermodynamics description of multicomponent diffusion, the flux relationships are integrated across the film yielding analytical expressions for the rate of mass transfer in a multicomponent adsorption system, when adsorption equilibria are described by the extended Langmuir isotherm. The new approximate rate equation can be conveniently used in the numerical simulation of adsorption systems with concentration-dependent micropore or surface diffusivity, and describes the effects of diffusional flux coupling. Results of accuracy comparable with that obtained when using the classical linear-driving-force approximation for systems with constant diffusivities are obtained with this new rate equation for both batch and fixed-bed adsorption calculations. A generalization of the approach based on the Gibbs adsorption isotherm describes mass transfer rates in terms of the spreading-pressure gradient and provides an extension to other multicomponent isotherm forms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 445-453 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; continuous flow reactor ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 445-453, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 434-444 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; adsorption ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Reducing the influence of an undesired product in an enzymatic reaction could have a significant impact on the productivity of such systems. Here, we focus on the removal of water formed during an enzymatic esterification in a batch reactor. A commercial immobilized lipase preparation, known as Lipozyme, is used as the biocatalyst and propionic acid and isoamyl alcohol dissolved in hexane are the substrates. In this system, the water formed will partition between the catalyst and the medium. As the more polar reactants are converted into the less polar ester product, the water is partitioned more towards the biocatalyst and the accumulation of water eventually causes lower reaction rates. Addition of a strong-acid cation exchange resin in sodium form is found to control the water accumulation on the biocatalyst without stripping the essential water needed for the enzyme to function and substantial improvements in conversion are achieved. A mathematical model is developed to describe the batch reaction behavior with and without added absorbent, which successfully predicts the behavior of water and its effects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 434-444, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...