Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 10 (1985), S. 297-311 
    ISSN: 1432-0983
    Keywords: Mitosis ; Meiosis ; Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have investigated the genetic and physiological control of meiosis in fission yeast. Nutritionally depleted h +/h − diploid cells become irreversibly commited to meiosis immediately prior to the initiation of premeiotic S phase. Premeiotic DNA synthesis requires matP +, matM +, mei2 + and mei3 + but not the mitotic cell cycle control gene, cdc2 +, ran1 + is an essential gene, loss of which provokes sexual conjugation, premeiotic DNA synthesis, pseudo-meiosis and the sporulation of haploid cells. Our experiments suggest that sexual differentiation is achieved physiologically by the inhibition of ran1 + activity in a two-step process. In the first step, partial inhibition of ran1 + in starved haploid cells, leads to cell cycle arrest in G1 followed by sexual conjugation. In the second step, a pathway requiring the matP +, matM + and mei3 + genes of the newly-formed zygote, further inhibits ran1 + and thereby commits the cell to meiosis. mei2 + is required for meiotic commitment after full inhibition of ran1 +. ran1 + is normally essential for vegetative cell reproduction but is inessential in cells which have abnormally high levels of cAMP-dependent protein kinase. We propose that the ran1 + gene encodes a highly controlled protein kinase which shares key substrates with cAMP-dependent protein kinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...