Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Microbial biomass  (4)
  • nitrate  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 253-258 
    ISSN: 1432-0789
    Keywords: Key words Grazing animals ; Enzyme activity ; Microbial biomass ; Pasture ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The size and activity of the soil microbial biomass in grazed pastures was compared on the main grazing area and on stock camp areas where animals congregate. Two sites were on hill country and three on gently sloping border-dyke irrigated land. Due to the transfer of nutrients and organic matter to the camp areas via dung and urine there was an accumulation of soil organic C, organic and inorganic P and S and soluble salts in the camp areas. Soil pH also tended to be higher in camp areas due to transfer of alkalinity by the grazing animals. Water soluble organic C, microbial biomass C and basal respiration were all higher in soils from camp areas but the proportion of organic C present as microbial C and the microbial respiratory quotient were unaffected. Microbial activity as quantified by arginine ammonification rate and fluorescein diacetate (FDA) hydrolysis was higher in camp than non-camp soils but dehydrogenase activity remained unaffected. Activities of protease, histidase, urease, acid phosphatase and aryl-sulphatase were all higher in stock camp soils. The activities of both histidase and aryl-sulphatase were also higher when expressed per unit of microbial biomass C, indicating that the increased activity was the result of increased enzyme production by the microbial community. Prolonged regular applications of dairy shed effluent (diluted dung and urine from cattle) to a field had a similar effect to stock camping in increasing soil organic matter content, nutrient accumulation and soil biological activity. It was concluded that the stock camping activity of grazing animals results in an increase in both the fertility and biological activity in soils from camp areas at the expense of these properties on the main grazing areas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 259-266 
    ISSN: 1432-0789
    Keywords: Key words Aggregate stability ; Microbial biomass ; Microbial activity ; Soil organic matter ; Microbial quotient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (〉60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Aggregate stability ; Soil organic matter ; Microbial biomass ; Pasture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of sample pretreatment (field-moist, air-dried or tension rewetted) on aggregate stability measured by wet sieving or turbidimetry were compared for a group of soil samples ranging in organic C content from 20 to 40 g C kg–1. Concentrations of total N, total and hot-water-extractable carbohydrate and microbial biomass C were linearly related to those of organic C. Aggregate stability measured by wet sieving using air-dried or field-moist samples and that measured by turbidimetry, regardless of sample pretreatment, increased curvilinearly with increasing soil organic C content. However, when tension-rewetted samples were used for wet sieving, aggregate stability was essentially unaffected by soil organic C content. Measurements of aggregate stability (apart from wet sieving using rewetted soils) were closely correlated with one another and with organic C, total and extractable carbohydrate and microbial biomass C content of the soils. The short-term effects of aggregate stability were also studied. Soils from under long-term arable management and those under long-term arable followed by 1 or 3 years under pasture had similar organic C contents, but aggregate stability measured by turbidimetry and by wet sieving using air-dried or field-moist samples increased with increasing years under pasture. Light fraction C, microbial biomass and hot-water-extractable carbohydrate concentrations also increased. It was concluded that both total and labile soil organic C content are important in relation to water-stable aggregation and that the use of tension-rewetted samples to measure stability by wet sieving is unsatisfactory since little separation of values is achieved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Earthworms ; Enzyme activity ; Microbial biomass ; Pasture ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated the quantity and distribution of organic C, microbial biomass C, protease, arylsulphatase and arylphosphatase activity, and earthworm numbers and biomass in the soil from a 37-year-old grazed pasture supplied with superphosphate at rates of 0, 188, and 376 kg ha-1 annually. The results were compared with a non-irrigated wilderness site which had not been used for agriculture and an arable site that had been intensively cultivated for 11 consecutive years. In the 0- to 5-cm layer, organic C followed the trend arable〈wilderness = control〈low phosphate = high posphate and soil biological activity generally followed a similar trend. For example, protease and arylsulphatase activity and microbial biomass C followed the order arable〈wilderness〈control〈low phosphate = high phosphate. The greater activity in the control than the wilderness site was attributed to the more regular turnover of organic matter throughout the year in the control due to the activity of the grazing animals. Earthworm numbers increased in the order arable〈wilderness〈control〈low phosphate〈high phosphate. In the improved pasture sites the earthworm population was dominated by Aporrectodea caliginosa (77–89% of total numbers) although Lumbricus rubellus made an increasing contribution to the population with increasing superphosphate rates. In the unirrigated wilderness site the population consisted of 56% A. caliginosa and 44% L. rubellus. While Octolasion cyaneum and A. rosea made up a small proportion of the population in the improved pasture sites, they were not present in the wilderness or arable sites. A. caliginosa was the only species present in the arable site. The mean fresh weight of individuals followed the order arable〈control = low phosphate = high phosphate〈wilderness and the proportion of jeveniles in the population was greatest in the arable and lowest in the wilderness site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0867
    Keywords: Cultivation ; leaching ; mineralization ; mixed cropping ; nitrate ; nitrogen ; pasture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment was conducted to investigate the effect of timing and method of cultivation of a 3-year old ryegrass/white clover pasture on subsequent N mineralization, NO 3 - -N leaching, and growth and N uptake of a wheat crop in the following season. The size of various N pools and decomposition of14C-labelled ryegrass material were also investigated. Cultivation method (mouldboard or chisel ploughing) generally had no significant effect on the accumulation of mineral N in the profile in the autumn or on the amount of NO 3 - -N leached over winter.14C measurements suggested that initial decomposition rate of plant material was faster from May than March cultivation treatments. Despite this, overall net mineralization of organic N (of soil plus plant origin) increased with increasing fallow period between cultivation and leaching. The total amounts of mineral N accumulated in the soil profile before the start of leaching were 139, 119 and 22 kg N ha−1 for the March, May and July cultivated soils respectively. Cumulative leaching losses over the trial calculated from soil solution samples were 78, 40 and 5 kg N ha−1 for the March, May and July cultivated soils respectively. Differences in N mineralization over the season were generally not reflected by changes in amounts of potentially-mineralizable soil N (as measured by extraction or laboratory incubation) or levels of microbial biomass during the season. The amount of mineral N in the profile in spring increased with decreasing fallow period. This was reflected in an approximately 15% and 25% greater grain yield and N uptake respectively by the following wheat crop in plots cultivated in July rather than in March.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0867
    Keywords: cultivation ; dicyandiamide ; leaching ; mineralization ; nitrate ; nitrification inhibitor ; pasture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of a nitrification inhibitor on the accumulation of ammonium (NH 4 + -N) and nitrate (NO 3 - -N) in the profile was investigated in two field experiments in Canterbury, New Zealand after the ploughing of a 4-year old ryegrass/white clover pasture in early (March) and late autumn (May). Nitrate leaching over the winter, and yield and N uptake of a following wheat crop were also assessed. The accumulation of N in the soil profile by the start of winter was greater in the March fallow (76–140 kg N ha−1) than in the May fallow treatment (36–49 kg N ha−1). The nitrification inhibitor dicyandiamide (DCD) did not affect the extent of net N mineralization, but it inhibited nitrification when applied to pasture before ploughing, especially at its depth of incorporation (100–200 mm). Nitrification inhibition in spring was greater when DCD was applied in May rather than in March due to its reduced degradation over the winter. Cumulative nitrate leaching losses were substantial from the March fallow treatment in both years (about 100 kg N ha−1). A delay in the cultivation of pasture and the application of DCD both reduced nitrate leaching losses. When leaching occurred early in the winter (in 1991), losses were less when pasture was cultivated in May (2 kg N ha−1) than when DCD was applied to pasture cultivated in March (68 kg N ha−1). When leaching occurred late in the winter (in 1992), similar losses were measured from pasture cultivated in May (49 kg N ha−1) and from DCD-treated pasture cultivated in March (57 kg N ha−1). Grain harvest yield and N uptake of the following spring wheat crop were generally unaffected by the size of the N leaching loss over the winter. This was due to the high N fertility of the soil after four years of a grazed leguminous pasture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 23 (1990), S. 105-112 
    ISSN: 1573-0867
    Keywords: Ammonium ; fertigation ; nitrate ; nitrogen ; trickle irrigation ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The movement and transformations of ammonium-, urea- and nitrate-N in the wetted volume of soil below the trickle emitter was studied in a field experiment following the fertigation of N as ammonium sulphate, urea and calcium nitrate. Effects on soil pH in the wetted volume were also investigated. During a fertigation cycle (emitter rate 2lh−1) applied ammonium was concentrated in the surface 10 cm of soil immediately below the emitter and little lateral movement occurred. In contrast, because of their greater mobility in the soil, fertigated urea and nitrate were more evenly distributed down the soil profile below the emitter and had moved laterally in the profile to 15 cm radius from the emitter. The conversion of applied N to nitrate-N was more rapid when urea rather than ammonium-N was applied suggesting that the accumulation of large amounts of ammonium below the emitter in the ammonium sulphate treatment probably retarded nitrification. Following their conversion to nitrate-N, both fertigated ammonium sulphate and urea caused acidification in the wetted soil volume. Acidification was confined to the surface 20 cm of soil in the ammonium sulphate treatment, however because of its greater mobility, fertigation with urea (2lh−1) resulted in acidification occurring down to a depth of 40 cm. Such subsoil acidity is likely to be very difficult to ameliorate. Increasing the trickle discharge rate from 2lh−1 to 4lh−1 reduced the downward movement of urea and encouraged its lateral spread in the surface soil. As a consequence, acidification was confined to the surface (0–20 cm) soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...