Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 216 (1981), S. 655-659 
    ISSN: 1432-0878
    Keywords: Eye ; Neuroeffector junction ; Octopamine ; Circadian rhythm ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Efferent fibers to the compound eye of the horseshoe crab, Limulus polyphemus, not only innervate the various pigment cells, but also invade the eccentric cell dendrite and the retinula cells. This finding provides a structural basis for the coupling of circadian rhythm between the efferents and the receptor cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 105 (1970), S. 303-316 
    ISSN: 1432-0878
    Keywords: Eye ; Arthropods ; Neurosecretion ; Microscopy, Electron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The lateral rudimentary eye of Limulus polyphemus, the horseshoe crab, is located beneath the posterior border of the compound eye. It consists of a bipartite mass of guanophores and about 100 associated photoreceptor cells. These neurons, up to 150 μ in diameter, have standard attributes of arthropod retinula cells and send large, uninterrupted axons to the brain. Their cytoplasm contains conspicuous clumps of residual bodies and variable, but usually extensive, masses of glycogen and glycoprotein. Hence, these neurons are not neurosecretory in the strict sense, notwithstanding axonal transport of glycogen masses toward the brain. Efferent axons to the rudimentary eye terminate in synaptoid fashion on the axon hillock of sensory cells. Since the rudimentary eye does not transmit impulses to the brain, but is photosensitive, its function may reside in a metabolic responsiveness to long-term changes in illumination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...