Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mitotic spindle assembly  (1)
  • Regulation of meiosis  (1)
  • Saccharomyces  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 2 (1980), S. 79-85 
    ISSN: 1432-0983
    Keywords: Meiosis ; Recombination ; DNA ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In meiotic cells of Saccharomyces cerevisiae, reduction in molecular weights of DNA in alkaline sucrose gradients is observed concomittantly with premeiotic DNA replication and with commitment to recombination. Following the completion of the latter processes, higher molecular weights are obtained. These single-stranded breaks are found in both old and newly synthesised strands. Similar scissions in DNA are also found in a temperature-sensitive mutant (cdc40/cdc40), which does not undergo commitment to recombination at the restrictive temperature, and in vegetative wild type cells that were previously exposed to sporulation medium. The suggestion that these scissions are the physical manifestation of commitment to recombination is therefore rejected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 375-384 
    ISSN: 1617-4623
    Keywords: Regulation of meiosis ; Saccharomyces cerevisiae ; IME1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MATα2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Imel protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to α-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: CDC40 ; DNA replication ; Mitotic spindle assembly ; cyclins ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...