Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 37 (1993), S. 347-354 
    ISSN: 1432-1432
    Keywords: Third positions of codons ; Control region ; Heterogeneity among sites ; Molecular clock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several estimates of the time of occurrence of the most recent common mitochondrial DNA (mtDNA) ancestor of modern humans have been made. Estimates derived from noncoding regions based on a model that classifies sites into two categories (variable and invariable) have been consistently older than those derived from the third positions of codons. This discrepancy can be attributed to a violation of the assumption of rate homogeneity among variable sites when analyzing the noncoding regions. Additional data from the partial control region sequences allow us to take into account some of this further heterogeneity. By assigning the sites to three classes (highly variable, moderately variable, and invariable) and by assuming that the last common mtDNA ancestor of humans and chimpanzees lived 4 million years ago, the most recent common mtDNA ancestor of humans is estimated to have occurred 211,000 ±111,000 years ago (±1 SE), consistent with the estimate, 101,000 ± 52,000 years, made from third positions of codons and also with those proposed previously. We used the same technique to estimate when a putative expansion of modern humans out of Africa took place and estimated a time of 89,000 ± 69,000 years ago. Even though the standard errors of these estimates are large, they allow us to reject the multiregional hypothesis of modern human origin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 40 (1995), S. 622-628 
    ISSN: 1432-1432
    Keywords: Mitochondrial DNA ; Hominoidea ; Molecular clock ; Maximum likelihood ; Site heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The internal branch lengths estimated by distance methods such as neighbor joining are shown to be biased to be short when the evolutionary rate differs among sites. The variable-invariable model for site heterogeneity fits the amino acid sequence data encoded by the mitochondrial DNA from Hominoidea remarkably well. By assuming the orangutan separation to be 13 or 16 Myr old, a maximum-likelihood analysis estimates a young date of 3.6 ± 0.6 or 4.4 ± 0.7 Myr (±1 SE) for the human/chimpanzee separation, and these estimates turn out to be robust against differences in the assumed model for amino acid substitutions. Although some uncertainties still exist in our estimates, this analysis suggests that humans separated from chimpanzees some 4–5 Myr ago.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 32 (1991), S. 37-42 
    ISSN: 1432-1432
    Keywords: Nucleotide sequences ; Major noncoding region ; Evolutionary rates ; Molecular clock ; Rate heterogeneity among sites ; Effective proportion of variable sites ; Maximum likelihood
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A molecular clock analysis was carried out on the nucleotide sequences of parts of the major noncoding region of mitochondrial DNA (mtDNA) from the major geographic populations of humans. Dates of branchings in the mtDNA tree among humans were estimated with an improved maximum likelihood method. Two species of chimpanzees were used as an outgroup, and the mtDNA clock was calibrated by assuming that the chimpanzee/human split occurred 4 million years ago, following our earlier works. A model of homogeneous evolution among sites does not fit well with the data even within hypervariable segments, and hence an additional parameter that represents a proportion of variable sites was introduced. Taking account of this heterogeneity among sites, the date for the deepest root of the mtDNA tree among humans was estimated to be 280,000±50,000 years old (±1 SE), although there remains uncertainty about the constancy of the evolutionary rate among lineages. The evolutionary rate of the most rapidly evolving sites in mtDNA was estimated to be more than 100 times greater than that of a nuclear pseudogene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1432
    Keywords: Phylogenetic tree ; Likelihood method ; RNA polymerase ; Archaebacteria ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The amino acid sequences of the largest subunits of the RNA polymerases I, II, and III from eukaryotes were compared with those of archaebacterial and eubacterial homologs, and their evolutionary relationships were analyzed in detail by a recently developed tree-making method, the likelihood method of protein phylogeny, as well as by the neighbor-joining method and the parsimony method, together with bootstrap analyses. It was shown that the best tree topologies predicted by the first two methods are identical, whereas the last one predicts a distinct tree. The maximum likelihood tree revealed that, after the separation from archaebacteria, the three eukaryotic RNA polymerases diverged from an ancestral precursor in the eukaryotic lineage. This result is contrasted with the published result showing multiple origins for the three eukaryotic polymerases. It was shown that eukaryotic RNA polymerase I evolved much more rapidly than RNA polymerases II and III: The N-terminal half of RNA polymerase I shows an extraordinarily high evolutionary rate, possibly due to relaxed functional constraints. In contrast the evolutionary rate of archaebacterial RNA polymerase is remarkably limited. In addition, including the second largest subunit of the RNA polymerase, a detailed analysis for the branching pattern of the three major groups of archaebacteria was carried out by the maximum likelihood method. It was shown that the three major groups of archaebacteria are likely to form a single cluster; that is, archaebacteria are likely to be monophyletic as originally proposed by Woese and his colleagues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 31 (1990), S. 205-210 
    ISSN: 1432-1432
    Keywords: Isozyme ; Intron ; Phylogenetic tree ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Both the mouse cytosolic malate dehydrogenase gene and its mitochondrial counterpart contain eight introns, of which two are present at identical positions between the isozyme genes. The probability that the two intron positions coincide by chance between the two genes has been shown to be significantly small (=1.3×10−3), suggesting that the conservation of the intron positions has a biological significance. On the basis of a rooted phylogenetic tree inferred from a comparison of these isozymes and lactate dehydrogenases, we have shown that the origins of the conserved introns are very old, possibly going back to a date before the divergence of eubacteria, archaebacteria, and eukaryotes. In the aspartate aminotransferase isozyme genes, five of the introns are at identical places. The origins of the five conserved introns, however, are not obvious at present. It remains possible that some or all of the conserved introns have evolved after the divergence of eubacteria and eukaryotes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...