Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Adsorption 2 (1996), S. 9-21 
    ISSN: 1572-8757
    Keywords: nanopores ; zeolites ; Monte Carlo simulations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A Grand Canonical Monte Carlo simulation method is used to determine the adsorption isotherms, interaction energies, entropies, and density distribution of a Lennard-Jones fluid adsorbed in smooth-walled nanopores of varying size and shape. We specifically include very crowded pores, where packing effects are important. Differences in the isotherms of slit, cylindrical, and spherical nanopores of varying sizes can be explained in terms of the adsorbate-adsorbate interaction energy, the adsorbate-pore interaction energy, and the density profiles, which influence the balance between the former and the latter energy contributions. The expectation from low loading studies that the most energetically favorable adsorbate-pore interactions maximize adsorption is not borne out at intermediate and higher loadings. Instead, the relationships between adsorbed amounts and pore size and shape are found to be strong functions of the depth and steepness of the external potential, the extent to which adsorbate-adsorbate repulsion establishes short range fluid order, and the accessible pore volume. This study has implications for high pore density processes in nanoporous materials, such as zeolite catalysis, separations, and templating in zeolite synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1528
    Keywords: Key words Mixed cationic surfactants ; Turbulent drag reduction ; Rheology ; Apparent extensional viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Experimental studies of the effects of mixtures of cationic surfactants on their drag reduction and rheological behaviors are reported. Cationic alkyl trimethyl quaternary ammonium surfactants with alkyl chain lengths of C12 and C22 were mixed at different molar ratios (total surfactant concentrations were kept at 5 mM with 12.5 mM sodium salicylate (NaSal) as counterion). Drag reduction tests showed that by adding 10% (mol) of C12, the effective drag reduction range expanded to 4–120 °C, compared with 80–130 °C with only the C22 surfactant. Thus mixing cationic surfactants with different alkyl chain lengths is an effective way of tuning the drag reduction temperature range. Cryo-TEM micrographs revealed thread-like micellar networks for surfactant solutions in the drag reducing temperature range, while vesicles were the dominant microstructures at non-drag reducing temperatures. High extensional viscosity was the main rheological feature for all solutions except 50% C12 (mol) solution, which also does not show strong viscoelasticity. It is not clear why this low extensional viscosity solution with relatively weak viscoelasticity is a good drag reducer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...