Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Multidimensional NMR spectroscopy;  (1)
  • protein backbone dynamics  (1)
  • 1
    ISSN: 1573-4919
    Keywords: lipid binding protein ; 15N relaxation ; protein backbone dynamics ; model-free approach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The backbone dynamics of bovine heart fatty acid binding protein (H-FABP) and porcine ileal lipid binding protein (ILBP) were studied by 15N NMR relaxation (T1 and T2) and steady state heteronuclear 15N{1H} NOE measurements. The microdynamic parameters characterizing the backbone mobility were determined using the ‘model-free’ approach. For H-FABP, the non-terminal backbone amide groups display a rather compact protein structure of low flexibility. In contrast, for ILBP an increased number of backbone amide groups display unusually high internal mobility. Furthermore, the data indicate a higher degree of conformational exchange processes in the μsec-msec time range for ILBP compared to H-FABP. These results suggest significant differences in the conformational stability for these two structurally highly homologous members of the fatty acid binding protein family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5001
    Keywords: Human intestinal fatty acid binding protein ; Isotope enrichment ; Multidimensional NMR spectroscopy; ; Sequential assignments ; Solution structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) proteinwhich binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanineto threonine substitution at position 54 in I-FABP has been identified which affects fatty acidbinding and transport, and is associated with the development of insulin resistance in severalpopulations including Mexican-Americans and Pima Indians. To investigate the molecularbasis of the binding properties of I-FABP, the 3D solution structure of the more commonform of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed byusing 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP wascalculated by using the distance geometry program DIANA based on 2519 distance constraintsobtained from the NMR data. Subsequent energy minimization was carried out by using theprogram SYBYL in the presence of distance constraints. The conformation of human I-FABPconsists of 10 antiparallel β-strands which form two nearly orthogonal β-sheets offive strands each, and two short α-helices that connect the β-strands A and B. Theinterior of the protein consists of a water-filled cavity between the two β-sheets. TheNMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segmentsaround the postulated portal region for the entry and exit of fatty acid ligand.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...