Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Ion-exchanger microelectrodes ; Muscle potassium efflux ; Work-induced changes in muscle ; Work-induced changes in venous blood ; Muscle work
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using liquid ion-exchanger semimicroelectrodes with a side pore, we measured changes of extracellular potassium concentration (Ke +) in adult rabbit and cat gastrocnemius muscles and in venous effluent blood flowing from the cat gastrocnemius muscle during various bouts of activity induced by sciatic nerve stimulation. 1. Isometric tetanic contractions (at 50 Hz) of various durations caused transient accumulation of Ke + which was non-linearly related to the duration of muscle activity. The peak values of Ke + in response to muscle stimulation were analogous in rabbits and cats, attaining values, e.g. after a 20-s isometric tetanus, between 8–9 mEq/lK+ in both species. 2. Potassium concentration in venous effluent blood (K ven + ) was transiently increased after isometric tetani. Since blood flow was measured at the same time, it was possible to calculate the amount of K+ lost by the muscle after tetani of various durations. A 32 g gastrocnemius muscle of the cat, for example, loses 9.36±1.52 μEqK+ after a 20-s isometric tetanus, which corresponds roughly to 0.5% of the total muscle potassium content. The loss of K+ in this muscle was 29.3 pEq K+/impulse/100 g fresh muscle tissue. 3. There was no evident difference between the amount of K+ released during isometric tetani, or tetanic contractions performed under isotonic conditions. Single twitches evoked by indirect stimulation at 1 Hz for several minutes also induced a small rise in K ven + . 4. If the loss of K+ from the muscle into the blood stream is transiently prevented by arterio-venous occlusion installed immediately before a 10-s isometric tetanus, most K+ is released subsequently when blood flow is renewed, if the occlusion lasts for 20–25 s. It is not until blood flow is occluded for 40–60 s that most K+ is apparently resorbed and only a minor portion is released and is to be found in the venous blood. 5. The transient accumulation of muscle extracellular potassium may locally affect nerve endings, skeletal and smooth muscle cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Ion-Exchanger Microelectrodes ; Muscle Potassium Efflux ; Work-Induced Changes in Muscle ; Work-Induced Changes in Venous Blood ; Muscle Work
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Modified Walker's liquid ion-exchanger microelectrodes were employed for measuring changes of K+ concentration in venous effluent blood from the cat gastrocnemius muscle during and after isometric tetani of various duration induced by indirect stimulation. The time course of these changes was obtained and the overall loss of K+ from a working muscle could thus be estimated. By comparing present results in the venous blood and previous findings of K+ concentration changes in the muscle extracellular space, a concentration gradient was found between the muscle and venous effluent blood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...