Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Sample size ; Quantitative trait loci ; Genotype ; Phenotypic classification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this paper we determine the minimum progeny sample size n needed to obtain, with probability α, at least m individuals of a desired two-locus genotype ℊ affecting quantitative traits. The two quantitative trait loci (QTLs) of interest may be linked or independent, with or without epistatic interaction between them. Parental genotypes may be known or unknown, and gene action at either locus may range from additive to overdominance. To reduce the required sample size, mating patterns that will produce a high proportion of desired progeny are suggested for different progeny genotypes and dominance levels. Based on the assumption of normally distributed quantitative trait expression, individuals can be classified into a genotype or genotypic group according to their phenotypic expressions. This technique is used to select both parents and progeny with unknown genotypes. Choice of parental classification criteria for a given quantitative trait affects classification accuracy, and hence the probability of obtaining progeny of the desired genotype. The complexity of this probability depends on the dominance level at each locus, the recombination fraction, and the awareness of parental genotypes. The procedure can be expanded to deal with more than two loci.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: heterocyst ferredoxin ; vegetative cell ferredoxin ; flavodoxin ; nitrogen fixation ; NADP+ photoreduction ; pyruvate ferredoxin/flavodoxin oxidoreductase ; electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In cyanobacteria an increasing number of low potential electron carriers is found, but in most cases their contribution to metabolic pathways remains unclear. In this work, we compare recombinant plant-type ferredoxins from Anabaena sp. PCC 7120, encoded by the genes petF and fdxH, respectively, and flavodoxin from Anabaena sp. PCC 7119 as electron carriers in reconstituted in vitro assays with nitrogenase, Photosystem I, ferredoxin-NADP+ reductase and pyruvate-ferredoxin oxidoreductase. In every experimental system only the heterocyst ferredoxin catalyzed an efficient electron transfer to nitrogenase while vegetative cell ferredoxin and flavodoxin were much less active. This implies that flavodoxin is not able to functionally replace heterocyst ferredoxin. When PFO-activity in heterocyst extracts was reconstituted under anaerobic conditions, both ferredoxins were more efficient than flavodoxin, which suggested that this PFO was of the ferredoxin dependent type. Flavodoxin, synthesized under iron limiting conditions, replaces PetF very efficiently in the electron transport from Photosystem I to NADP+, using thylakoids from vegetative cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...