Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 61 (1981), S. 31-38 
    ISSN: 1432-1424
    Keywords: Sarcoplasmic reticulum ; K-channel, planar bilayer ; ion selectivity ; Cs-block ; excitation-contraction coupling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Sarcoplasmic reticulum (SR) vesicles from frog leg muscle were fused with a planar phospholipid bilayer by a method described previously for rabbit SR. As a result of the fusion, K+-selective conduction channels are inserted into the bilayer. Unlike the two-state rabbit channel, the frog channel displays three states: a nonconducting (“closed”) state and two conducting states “α” and “β”. In 0.1m K+ the single-channel conductances are 50 and 150 pS for α and β, respectively. The probabilities of appearearance of the three states are voltage-dependent, and transitions between the closed and β states proceed through the α state. Both open states follow a quantitatively identical selectivity sequence in channel conductance: K+〉NH 4 + 〉Rb+〉Na+〉Li+〉Cs+. Both open states are blocked by Cs+ asymmetrically in a voltage-dependent manner. The zero-voltage dissociation constant for blocking is the same for both open states, but the voltage-dependences of the Cs+ block for the two states differ in a way suggesting that the Cs+ blocking site is located more deeply inside the membrane in the β than in the α state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: amiloride ; methylation ; frog skin ; A6 cells ; Na+ channel ; epithelia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We report the synthesis of a radioactive, methylated analog of bromoamiloride which inhibits the amiloride-sensitive, epithelial Na+ channel reversibly and with high affinity. This synthesis was achieved by methylation of a nitrogen in the acylguanidinium moiety with tritiated methyliodide of high specific activity. This methylated bromoamiloride molecule (CH3BrA) was purified by both thin layer and high performance liquid chromatography. Proton nuclear magnetic resonance and mass spectroscopy techniques were used to determine the structure of this analog. This compound inhibited both short-circuit current ofin vitro frog skin and22Na+ influx into apical plasma membrane vesicles made from cultured toad kidney cells (line A6) with the same or lower apparent inhibitory dissociation constant as bromoamiloride. Irradiation with ultraviolet light rendered this inhibition irreversible in both A6 vesicles and frog skin. Preparation of radioactive CH3BrA yielded specific activities in excess of 1 Ci/mmol. We suggest that this compound will be useful in the isolation and purification of this ubiquitous Na+ channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...