Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 13 (1986), S. 309-321 
    ISSN: 1432-1017
    Keywords: Na, K-pump ; active transport ; electrogenic transport ; current-voltage behaviour ; Post-Albers scheme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The current voltage characteristic of the Na, K pump is described on the basis of a modified Post-Albers cycle. The voltage dependence of the rate constants is derived from the elementary chargetranslocations associated with the single reaction steps. Charge displacements result from movements of the sodium- or potassium-loaded binding sites, as well as from motions of polar groups in the pump molecule. If part of the transmembrane voltage drops between the alkali-ion binding sites and the aqueous solution, the binding constants become voltage-dependent. Depending on the values of the microscopic parameters, the current-voltage characteristic may assume a variety of different shapes. Saturating behaviour results when one or more voltage-independent reaction steps become rate limiting. Non-monotonic current-voltage curves exhibiting regions of negative pump conductance are predicted when, at least in one of the transitions, charge is moved against the direction of overall charge-translocation. The theoretical predictions are compared with recent experimental studies of voltage-dependent pump currents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 99 (1987), S. 1-11 
    ISSN: 1432-1424
    Keywords: Na−Ca exchange ; electrogenic transport ; current-voltage characteristic ; membrane potential ; transport models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Voltage effects on the Na−Ca exchange system are analyzed on the basis of two kinetic models, a “consecutive” and a “simultaneous” reaction scheme. The voltage dependence of a given rate constant is directly related to the amount of charge which is translocated in the corresponding reaction step. Charge translocation may result from movement of an ion along the transport pathway, from displacement of charged ligand groups of the ion-binding site, or from reorientation of polar residues of the protein in the course of a conformational transition. The voltage dependence of ion fluxes is described by a set of coefficients reflecting the dielectric distances over which charge is translocated in the individual reaction steps. Depending on the charge of the ligand system and on the values of the dielectric coefficients, the flux-voltage curve can assume a variety of different shapes. When part of the transmembrane voltage drops between aqueous solution and binding site, the equilibrium constant of ion binding becomes a function of membrane potential. By studying the voltage dependence of ion fluxes in a wide range of sodium and calcium concentrations, detailed information on the microscopic properties of the transport system may be obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...