Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Brain ; Focal ischemia ; Reperfusion ; Albumin extravasation ; Blood-brain barrier
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Prolonged ischemia is known to damage the blood-brain barrier, causing an increase in vascular permeability to proteins. We studied the time course of extravasation of endogenous albumin in rats after 1 and 2 h of middle cerebral artery (MCA) occlusion followed by 6, 12, and 24 h of recirculation. In a separate group of rats that had undergone 1 h of MCA occlusion and 6 h of recirculation, influx of [14C]aminoisobutyric acid (AIB) from blood to brain was also measured. After 1 h of occlusion followed by 6 h of recirculation, neuronal damage was evident in caudoputamen, but there were no signs of blood-brain barrier leakage to either AIB or albumin. At 12 h, the caudoputamen contained extravasated albumin, and at 24 h extravasation was extended to the somatosensory cortex. Animals subjected to 2 h of MCA occlusion showed albumin extravasation in caudoputamen already at 6 h of recirculation, and at 12 and 24 h albumin was abundant in the major part of the right hemisphere. This study suggests that damage to neurons precedes leakage of the blood-brain barrier. Even a relatively short period of ischemia such as 1 h will result in markedly increased vascular permeability. However, a longer transient ischemic insult disrupts the blood-brain barrier earlier than a shorter one.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 37-50 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Dark neurons ; Neuronal necrosis ; Caudate ; Putamen ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The caudate nucleus and putamen belong to the selectively vulnerable brain regions which incur neuronal damage in clinical and experimental settings of both hypoglycemia and ischemia. We have previously documented the density and distribution of the hypoglycemic damage in rat caudoputamen, but the evolution of the injury, i.e., the sequence of structural changes, has not been assessed. Therefore, in the present study we analyze the light and electron microscopic alterations in the caudoputamen of rats exposed to standardized, pure insults of severe hypoglycemia with isoelectric EEG for 10–60 min, or in rats which, following insults of 30 or 60 min, were allowed to recover for periods from 5 min to 6 months. The hypoglycemic insult produced severe nerve cell injury in the dorsolateral caudoputamen. Immediately after the insult abnormal light neurons with clearing of the peripheral cytoplasm were present. These cells disappeared early in the receovery period, as they do in the cerebral cortex. Dark neurons were also present, but unlike those in the cerebral cortex they did not appear until recovery was instituted. Their number increased for a couple of hours and they became acidophilic within 4–6 h. At this stage, electron microscopy revealed severe clumping of the nuclear chromatin and cytoplasm as well as incipient fragmentation of cell membranes, all these changes indicating an irreversible injury. Within 24 h flocculent densities appeared in the mitochondria and by day 2–3 of recovery the great majority of the medium-sized neurons had undergone karyorrhexis and cytorrhexis, their remnants being subsequently removed by macrophages. After some weeks only large and a few medium-sized neurons remained amidst reactive astrocytes and numerous macrophages. The delay in the appearance of dark, lethally injured medium-sized neurons until the recovery was instituted suggests an effect that does not become apparent until the substrate supply and energy production are restored. Furthermore, it pointt out again the selectivity of the hypoglycemic nerve cell injury with respect to the type (metabolic characteristics?) and topographic location of the neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 177-191 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Cerebrospinal fluid ; Interstitial fluid ; Neuronal necrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Rats were exposed to insulin-induced hypoglycemia resulting in periods of cerebral isoelectricity ranging from 10 to 60 min. After recovery with glucose, they were allowed to wake up and survive for 1 week. Control rats were recovered at the stage of EEG slowing. After sub-serial sectioning, the number and distribution of dying neurons was assessed in each brain region. Acid fuchsin was found to stain moribund neurons a brilliant red. Brains from control rats showed no dying neurons. From 10 to 60 min of cerebral isoelectricity, the number of dying neurons per brain correlated positively with the number of minutes of cerebral isoelectricity up to the maximum examined period of 60 min. Neuronal necrosis was found in the major brain regions vulnerable to several different insults. However, within each region the damage was not distributed as observed in ischemia. A superficial to deep gradient in the density of neuronal necrosis was seen in the cerebral cortex. More severe damage revealed a gradient in relation to the subjacent white matter as well. The caudatoputamen was involved more heavily near the white matter, and in more severely affected animals near the angle of the lateral ventricle. The hippocampus showed dense neuronal necrosis at the crest of the dentate gyrus and a gradient of increasing selective neuronal necrosis medially in CA1. The CA3 zone, while relatively resistant, showed neuronal necrosis in relation to the lateral ventricle in animals with hydrocephalus. Sharp demarcations between normal and damaged neuropil were found in the hippocampus. The periventricular amygdaloid nuclei showed damage closest to the lateral ventricles. The cerebellum was affected first near the foramina of Luschka, with damage occurring over the hemispheres in more severely affected animals. Purkinje cells were affected first, but basket cells were damaged as well. Rare necrotic neurons were seen in brain stem nuclei. The spinal cord showed necrosis of neurons in all areas of the gray matter. Infarction was not seen in this study. The possibility is discussed that a neurotoxic substance borne in the tissue fluid and cerebrospinal fluid (CSF) contributes to the pathogenesis of neuronal necrosis in hypoglycemic brain damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 76 (1988), S. 253-264 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Rat ; Hyperglycemia ; Postischemic seizures ; Substantia nigra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study explores how hyperglycemia and enhanced tissue lactic acidosis influence the density and distribution of ischemic brain damage. Ischemia of 10-min duration was produced in glucose-infused rats by bilateral carotid clamping combined with hypotension, and the brains were perfusion-fixed with formaldehyde following recirculation of 3, 6, 12 and 18 h. After about 24 h the hyperglycemic animals developed seizures, and at that time two groups were added, one fixed prior to, and one after the onset of seizures. Similar experiments were made on normoglycemic animals with recirculation times of 1.5 to 96 h. After fixation the brains were embedded in paraffin, subserially sectioned and stained with celestine blue/acid fuchsin. In both normo- and hyperglycemic animals, neurons in the dentate hilus of the hippocampal formation and in the thalamic lateral reticular nucleus showed early and dense neuronal necrosis. In neocortex, hippocampal CA1 sector and caudoputamen, hyperglycemia shortened the delay before damage occurred and markedly enhanced the damage. Specific for the hyperglycemic animals was damage of the substantia nigra, pars reticulata (SNPR), manifest already at the earliest recovery periods studied; this finding is discussed in relationship to the role SNPR is assumed to play in preventing spread of seizure discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 83 (1992), S. 379-385 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Hypothermia ; Neuronal damage ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of hypothermia on hypoglycemic brain damage were studied in rats after a 30-min period of hypoglycemic coma, defined as cessation of spontaneous EEG activity. The rats were either normothermic (37°C) or moderately hypothermic (33°C). Morphological brain damage was evaluated after various periods of recovery. Hypothermic animals with halothane anesthesia never resumed spontaneous respiration, thus requiring artificial ventilation during recovery (maximally 8h). In contrast, when isoflurane was used as the anesthetic agent, all animals survived and were examined after 1 week of recovery. There was a tendency towards gradually higher arterial plasma glucose levels during hypoglycemia with lower body temperature. The time period from insulin injection until isoelectric EEG appeared was gradually prolonged by hypothermia, and was shorter when isoflurane was used for anesthesia. Brain damage was examined within the neocortex, caudoputamen and hippocampus (CA1, subiculum and the tip of the dentate gyrus). Damage to neurons was found to be of two types, namely condensed dark purple neurons (pre-acidophilic) and shrunken bright red-staining neurons (acidophilic). In the neocortex, no clear influence of temperature on the degree of injury was seen. In the caudoputamen, the number of injured neurons clearly decreased at lower temperature (33°C,P〈0.001) when halothane was used, while no such difference was seen when isoflurane was used as the anesthetic agent. Likewise, a protective effect of hypothermia was seen in subiculum (P〈0.01) when halothane, but not isoflurane was used. Damage to CA1 neurons was mild in both groups with halothane, but slightly less frequent (P〈 0.05) in the hypothermic group, in which the majority of animals showed no damage. No protection of hypothermia was seen in the animals with isoflurane anesthesia. Furthermore, with isoflurane, more damaged CA1 cells were seen in the normothermic situation as compared to when halothane was used (P〈0.01). In contrast, damage to the tip of the dentate gyrus was remarkedely resistant to hypothermia, with the majority of animals showing the same degree of damage as the normothermic ones irrespective of the anesthetic agent used. In summary, hypothermia seemed to have only a partial protective effect on the development of hypoglycemic brain damage, the effects differing between regions previously described to be selectively vulnerable to hypoglycemia, and also differing when halothane or isoflurane were used as anesthetic agents. While long-term survival was achieved with the use of isoflurane, the protective effect of hypothermia seemed to be lost.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 319-332 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Selective vulnerability ; Neuronal necrosis ; Cell death ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The density and distribution of brain damage after 2–10 min of cerebral ischemia was studied in the rat. Ischemia was produced by a combination of carotid clamping and hypotension, followed by 1 week recovery. The brains were perfusion-fixed with formaldehyde, embedded in paraffin, subserially sectioned, and stained with acid fuchsin/cresyl violet. The number of necrotic neurons in the cerebral cortex, hippocampus, and caudate nucleus was assessed by direct visual counting. Somewhat unexpectedly, mild brain damage was observed in some animals already after 2 min, and more consistently after 4 min of ischemia. This damage affected CA4 and CA1 pyramids in the hippocampus, and neurons in the subiculum. Necrosis of neocortical cells began to appear after 4 min and CA3 hippocampal damage after 6 min of ischemia, while neurons in the caudoputamen were affected first after 8–10 min. Selective neuronal necrosis of the cerebral cortex worsened into infarction after higher doses of insult. Damage was worst over the superolateral convexity of the hemisphere, in the middle laminae of the cerebral cortex. The caudate nucleus showed geographically demarcated zones of selective neuronal necrosis, damage to neurons in the dorsolateral portion showing an all-or-none pattern. Other structures involved included the amygdaloid, the thalamic reticular nucleus, the septal nuclei, the pars reticularis of the substantia nigra, and the cerebellar vermis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 13-24 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral cortex ; Nerve cell injury ; Dark neurons ; Acidophilic neurons ; Mitochondria ; Golgi apparatus ; Cell necrosis ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the course of a study on the pathogenesis of neuronal necrosis in severe hypoglycemia, the morphological characteristics reflecting reversible and irreversible neuronal lesions were examined as a function of time following normalization of blood glucose. To that end, closely spaced time intervals were studied in the rat cerebral cortex before, during, and up to 1 year after standardized pure hypoglycemic insults of 30 and 60 min of cerebral isoelectricity. Both the superficial and deep layers of the cerebral cortex showed dark and light neurons during and several hours after the insult. By electron microscopy (EM) the dark neurons were characterized by marked condensation of both karyoplasma and cytoplasm, with discernible, tightly packed cytoplasmic organelles. The light neurons displayed clustering of normal organelles around the nucleus with clearing of the peripheral cytoplasm. Some cells, both dark neurons and neurons of normal electron density, contained swollen mitochondrial with fractured cristae. Light neurons disappeared from the cerebral cortex by 4 h of recovery. Some dark neurons in the superficial cortex and almost all in the deep cortex evolved through transitional forms into normal neurons by 6 h recovery. Another portion of the dark neurons in the superficial cortex became acidophilic between 4 and 12 h, and by EM they demonstrated karyorrhexis with stippled electron-dense chromatin. The plasma membrane was disrupted, the cytoplasm was composed of amorphous granular debris, and the mitochondria contained flocculent densities. These definitive indices of irreversible neuronal damage were seen as early as 4–8 h recovery. Subsequently, the acidophilic neurons were removed from the tissue, and gliosis ensued. Thus, even markedly hyperchromatic “dark” neurons are compatible with survival of the cell, as are neurons with conspicuous mitochondrial swelling. Definite nerve cell death is verified as the appearance of acidophilic neurons at which stage extensive damage to mitochondria is already seen in the form of flocculent densities, and cell membranes are ruptured. Our previous results have shown that hypoglycemic neocortical damage affects the superficial laminae, chiefly layer 2. The present results demonstrate that, following the primary insult, this damage evolves relatively rapidly within the first 4–12 h. We have obtained no evidence that additional necrotic neurons are recruited after longer recovery periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 25-36 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Hippocampus ; Neuronal necrosis ; Mitochondria ; Astrocyte ; Endothelial microvilli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Part I of this paper has documented the evolution of dark neurons into acidophilic neurons in the superficial laminae as well as the reversion of dark neurons to normal neurons in the deep laminae of the cerebral cortex in hypoglycemic brain damage. The present study describes the temporal evolution of hypoglycemic brain damage in the hippocampus. The evolution of dark neurons to acidophilic neurons was confirmed in this brain region. Four additional problems were addressed: Firstly, delayed neuronal death was looked for, and was found to occur in areas of CA1 undergoing mild damage. However, it was not preceded by a morphological free interval, had ultrastructural characteristics distinct from delayed neuronal death in ischemia, and hence should be considered a distinct phenomenon. Secondly, the gradient in the density of neuronal necrosis in the rat hippocampal pyramidal cell band was exploited to test the hypothesis that a more severe insult causes a more rapid evolution of neuronal changes. This was found to be the case, with a temporal spectrum in the timing of neuronal death: Necrosis occurred already after 2 h medially in the sobiculum, and was delayed by up to several weeks laterally in CA1. Thirdly, the almost universal sparing of CA3 pyramidal neurons after 30 min hypoglycemic isoclectricity was exploited to address the question of whether reactive changes, which could with certainty be deemed reversible, occur in CA3. Mitochondrial injury was seen in these cells, and was found to be recoverable. No reactive changes of the type previously described following ischemic insults were observed. Fourthly, the astrocytic and vascular response of the tissue was studied. A sequence of astrocytic changes representing structural and probably metabolic activation of astrocytes was seen, consisting of morphological indices of increased turnover of cellular components. Capillaries demonstrated endothelial pits, vesicles, and prominent microvilli hours to days after recovery. The results demonstrate that, in the hippocampal gyrus as in other brain regions, hypoglycemic brain damage is distinct from ischemic brain damage and likely has a different pathogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 91-101 
    ISSN: 1432-1106
    Keywords: Ischemia ; Hyperglycemia ; Hypothermia ; Seizures ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Preischemic hyperglycemia aggravates brain damage following transient ischemia, and adds some special features to the damage incurred, notably a high frequency of postischemic seizures, cellular edema, and affectation of additional brain structures, such as the substanta nigra pars reticulata (SNPR). We raised the question whether mild intra-ischemic hypothermia (32–33° C), known to reduce selective neuronal vulnerability in normoglycemic subjects, also ameliorates the characteristic damage observed in hyperglycemic animals. To that end, two series of experiments were performed. In the first, normo- and hypothermic animals were subjected to 10 min of ischemia during hyperglycemic conditions (plasma glucose 20–25 mmol · 1-1), and allowed either 15 h or 1 week of recovery. In the second, both normo- and hyperglycemic animals were subjected to 15 min of ischemia (at normal or reduced temperature) and surviving animals were studied after 1 week of recovery. All normothermic, hyperglycemic animals developed postischemic seizures and died within the first 24 h. Mild hypothermia afforded substantial protection. Thus, 6/7 hypothermic animals subjected to 10 min of ischemia survived 1 week of recovery and none developed postischemic seizures. Of the hypothermic animals subjected to 15 min of ischemia 6/11 survived for 1 week, only one of which developed seizures. Protection by hypothermia was also shown by the histopathological analysis. Experiments with 10 min of ischemia and 15 h of recovery showed the expected damage in normothermic, hyperglycemic subjects. Hypothermia markedly reduced damage in all vulnerable structures, including the cingulate cortex and SNPR. The protection was most pronounced in the caudoputamen, where no affected neurons were seen in the hypothermic subjects. The experiments with 15 min of ischemia confirmed previous findings that mild hypothermia protects normoglycemic animals against the insult. The results also showed that hypothermia prevented most of the exaggeration of damage caused by hyperglycemia. However, under hypothermic conditions hyperglycemia still augmented damage in the cingulate cortex, medial and lateral venteroposterior thalamic nuclei, and SNPR, structures specifically damaged under hyperglycemic, normothermic conditions. This suggests that hypothermia has less of a protective effect on mechanisms causing such damage than on neuronal damage in the classic selectively vulnerable regions, particularly the caudoputamen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 89 (1992), S. 67-78 
    ISSN: 1432-1106
    Keywords: Cerebral ischemia ; Experimental stroke ; Recirculation ; Cerebral blood flow ; Brain damage ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has become increasingly clear that a stroke lesion usually consists of a densely ischemic focus and of perifocal areas with better upheld flow rates. At least in rats and cats, some of these perifocal (“penumbral”) areas subsequently become recruited in the infarction process. The mechanisms may involve an aberrant cellular calcium metabolism and enhanced production of free radicals. In general, though, the metabolic perturbation in the penumbra requires better characterization. The objective of this article was to define flow distribution in a rat model of reversible middle cerebral artery (MCA) occlusion, so as to allow delineation of the metabolic aberrations responsible for the subsequent infarction. We modified the intraluminal filament occlusion model recently developed by Koizumi et al. (1986), and described in more detail by Nagasawa and Kogure (1989), adopting it for use in both spontaneously breathing and artificially ventilated rats. Successful occlusion of the MCA (achieved in about 9/10 rats) was judged by unilateral EEG depression in ventilated rats, and neurological deficits, such as circling, in spontaneously breathing ones. CBF in the ipsilateral hemisphere was reduced to nearly constant values after 20, 60, and 120 min of occlusion, flow rates in the focus being about 10% and in the perifocal ipsilateral areas about 15–20% of control (contralateral side). When the filament was left in place (permanent occlusion) 2,3,5-triphenyl tetrazolium chloride (TTC) staining and histopathology after 24 h showed a massive infarct on the occluded side, extending from caudoputamen and overlaying cortex to the occipital striate cortex. Animals recirculated after 60 min of MCA occlusion, and allowed to survive 7 days for histopathology, showed infarction of the caudoputamen (lateral part or whole nucleus) in 5/6 animals and selective neuronal necrosis in one animal. The neocortex showed either infarcts, selective neuronal necrosis, or no damage. There was some overlap between neocortical areas which were infarcted and those which were salvaged by reperfusion. In general, though, both the CBF data and the recovery studies with a histopathological endpoint define large parts of the neocortex as perifocal (penumbral) areas which lend themselves to studies of metabolic events leading to infarction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...