Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Rubredoxin ; Solution structure ; Paramagnetism ; Nuclear relaxation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The solution structure of reduced Clostridium pasteurianum rubredoxin (MW 6100) is reported here. The protein is highly paramagnetic, with iron(II) being in the S=2 spin state. The Hβ protons of the ligating cysteines are barely observed, and not specifically assigned. Seventy-six percent of the protons have been assigned and 1267 NOESY peaks (of which 1037 are meaningful) have been observed. Nonselective T 1 measurements have been measured by recording four nonselective 180°-τ-NOESY at different τ values, and fitting the intensity recoveries to an exponential recovery. Thirty-six metal-proton upper and lower distance constraints have been obtained from the above measurements. The use of such constraints is assessed with respect to spin delocalization on the sulfur donor atoms. The solution structure obtained with the program DYANA has been refined through restrained energy minimization. A final family of 20 conformers is obtained with no distance violations larger than 0.24 Å, and RMSD values to the mean structure of 0.58 and 1.03 Å for backbone and all heavy atoms, respectively (measured on residues 3–53). The structure is compared to the X-ray structure of the oxidized and of the zinc substituted protein, and to the available structures of other rubredoxins. In particular, the comparison with the crystal structure and the solution structure of the Zn derivative of the highly thermostable Pyrococcus furiosus rubredoxin suggested that the relatively low thermal stability of the clostridial rubredoxin may be tentatively ascribed to the loosening of its secondary structure elements. This research is a further achievement at the frontier of solution structure determinations of paramagnetic proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: NMR ; iron-sulfur proteins ; nuclear Overhauser effect ; paramagnetic relaxation ; relaxation matrix analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have accounted for the effect of paramagnetism on the intensities of NOEs in a 73-residue paramagnetic metalloprotein, the reduced high-potential iron sulfur protein ISO I from Ectothiorhodospira halophila, whose solution structure had been recently solved by us. The paramagnetic effects were dealt with through a suitably modified complete relaxation matrix approach. We have then recalculated the structure through a distance geometry program by minimizing the difference between the sixth roots of the calculated and experimental NOEs.The average RMSD, calculated on residues 4-71, within the structures constituting the two families decreased from 0.67 to 0.46 Å for backbone atoms and from 1.23 to 1.06 Å for all heavy atoms. The structures in the new family are for the most part within the indetermination of the previous, less resolved, family. A few specific differences are detected and related to the presence of non-negligible paramagnetic effects, which are now properly evaluated.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...