Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Numerical Methods  (1)
  • Parallel splitting method  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Numerical algorithms 3 (1992), S. 427-440 
    ISSN: 1572-9265
    Keywords: 65B05 ; 65N30 ; Parallel splitting method ; parabolic problem ; parallel LOD method ; global extrapolation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract Extrapolation with a parallel splitting method is discussed. The parallel splitting method reduces a multidimensional problem into independent one-dimensional problems and can improve the convergence order of space variables to an order as high as the regularity of the solution permits. Therefore, in order to match the convergence order of the space variables, a high order method should also be used for the time integration. Second and third order extrapolation methods are used to improve the time convergence and it was found that the higher order extrapolation method can produce a more accurate solution than the lower order extrapolation method, but the convergence order of high order extrapolation may be less than the actual order of the extrapolation. We also try to show a fact that has not been studied in the literature, i.e. when the extrapolation is used, it may decrease the convergence of the space variables. The higher the order of the extrapolation method, the more it decreases the convergence of the space variables. The global extrapolation method also improves the parallel degree of the parallel splitting method. Numerical tests in the paper are done in a domain of a unit circle and a unit square.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 7 (1991), S. 209-225 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting-up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used with parallel processors. We can solve multidimensional problems by applying only the 1D method and consequently avoid the difficulties in constructing a finite element space for multidimensional problems. The method is suitable for general domains as well as rectangular domains. Every 1D subproblem is solved by applying cubic B-splines. Several numerical examples are presented.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...