Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 14 (1998), S. 437-449 
    ISSN: 1069-8299
    Keywords: finite elements ; explicit dynamics ; near incompressible deformation ; large strains ; tetrahedron ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper presents a simple linear tetrahedron element that can be used in explicit dynamics applications involving nearly incompressible materials or incompressible materials modelled using a penalty formulation. The element prevents volumetric locking by defining nodal volumes and evaluating average nodal pressures in terms of these volumes. Two well-known examples relating to the impact of elasto-plastic bars are used to demonstrate the ability of the element to model large isochoric strains without locking. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 3205-3228 
    ISSN: 0029-5981
    Keywords: finite elements ; superplasticity ; incremental flow formulation ; thick sheet forming ; average deformation gradient element ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The paper discusses the finite element analysis of the superplastic forming of thick sheet components. The incremental formulation proposed is based on a geometrical approximation of the flow type of constitutive equations that describe the behaviour of the alloy during forming. The spatial discretization is achieved using eight-noded finite elements. An algorithm capable of predicting the correct forming pressure is also presented in a form consistent with the incremental flow formulation. Some experimental validation of these techniques will be shown together with a number of more realistic applications which will illustrate the generality of these techniques and their ability to simulate the forming of complex components. Most of the material in this section is standard but has been included for the purpose of completeness and to introduce the reader to the notation used in the paper. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...