Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Dinitrogen fixation ; Plant functional types ; legumes ; Nutrient limitation ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P 〈 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (〉98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 184 (1996), S. 219-229 
    ISSN: 1573-5036
    Keywords: carbon sequestration ; elevated CO2 ; metabolic quotient ; microbial biomass ; nutrient limitation ; respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated microbial responses in a late successional sedge-dominated alpine grassland to four seasons of CO2 enrichment. Part of the plots received fertilizer equivalent to 4.5g N m−2 a−1. Soil basal respiration (R mic ), the metabolic quotient for CO2 (qCO2=R mic /C mic ), microbial C and N (C mic and N mic ) as well as total soil organic C and N showed no response to CO2 enrichment alone. However, when the CO2 treatment was combined with fertilizer addition R mic and qCO2 were statistically significantly higher under elevated CO2 than under ambient conditions (+57% and +71%, respectively). Fertilizer addition increased microbial N pools by 17%, but this was not influenced by elevated CO2. Microbial C was neither affected by elevated CO2 nor fertilizer. The lack of a CO2-effect in unfertilized plots was suprising in the light of our evidence (based on C balance) that enhanced soil C inputs must have occurred under elevated CO2 regardless of fertilizer treatment. Based on these data and other published work we suggest that microbial responses to elevated CO2 in such stable, late-successional ecosystems are limited by the availability of mineral nutrients and that results obtained with fertile or heavily disturbed substrates are unsuitable to predict future microbial responses to elevated CO2 in natural systems. However, when nutrient limitation is removed (e.g. by wet nitrogen deposition) microbes make use of the additional carbon introduced into the soil system. We believe that the response of natural ecosystems to elevated CO2 must be studied in situ in natural, undisturbed systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...