Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Off-vertical-axis rotation  (2)
  • Superior colliculus  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 50 (1983), S. 69-83 
    ISSN: 1432-1106
    Keywords: Superior colliculus ; Visual deprivation ; Auditory responses ; Multisensory convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurones in the superior colliculus of normal and visually deprived cats were analyzed for their responses to visual, auditory and somatosensory stimuli. The percentage of auditory-responsive cells throughout all layers had increased from 11% to 42% after binocular deprivation. Some auditory responses were found even in superficial layers. The number of somatosensory responses, though not systematically tested, was also higher in the visually deprived animals. Visually responsive units did not significantly decrease in number, thus resulting in an increased proportion of multisensory neurones. The vigour of auditory responses had increased after visual deprivation, while the vigour of visual responses had decreased significantly. In addition to the auditory effects of visual deprivation found, our study confirms previous findings on the visual effects of visual deprivation in the superior colliculus. Since only qualitative changes of visual responses, but no suppression of visual by non-visual activity was found, the neuronal mechanisms responsible for these changes may be different from competition as present in the visual cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 66 (1987), S. 522-532 
    ISSN: 1432-1106
    Keywords: Off-vertical-axis rotation ; Eye movements ; Vestibulo-ocular reflex ; Optokinetic nystagmus ; Otoliths ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Horizontal and vertical eye movements were recorded from cats in response to either a) off-vertical axis rotation (OVAR) at a range of velocities (5–72 deg/s) and a range of tilts (0–60 deg) or b) horizontal (with respect to the cat) optokinetic stimulation (10–80 deg/s), also around a range of tilted axes (0–60 deg). The responses to stopping either of these stimuli were also measured: post-rotatory nystagmus (PRN) following actual rotation, and optokinetic after nystagmus (OKAN) following optokinetic stimulation. The response found during OVAR was a nystagmus with a bias slow-phase velocity that was sinusoidally modulated. The bias was dependent on the tilt and reached 50% of its maximum velocity (maximum was 73±23% of the table velocity) at a tilt of 16 deg. The phase of modulation in horizontal eye velocity bore no consistent relation to the angular rotation. The amplitude of this modulation was roughly correlated with the bias with a slope of 0.13 (deg/s) modulation/(deg/s) bias velocity. There was also a low-velocity vertical bias with the slow-phases upwardly directed. The vertical bias was also modulated and the amplitude depended on the bias velocity (0.27 (deg/s) modulation/ (deg/s) bias velocity). When separated from the canal dependent response, the build up of the OVAR response had a time constant of 5.0±0.8 s. Following OVAR there was no decline in the time constant of PRN which remained at the value measured during earth-vertical axis rotation (EVAR) (6.3±2 s). The peak amplitude of PRN was reduced, dependent on the tilt, reaching only 20% of its EVAR value for a tilt of 20 deg. When a measurable PRN was found, it was accompanied by a slowly-emerging vertical component (time constant 5.4±2s) the effect of which was to vector the PRN accurately onto the earth horizontal. OKN measured about a tilted axis showed no differences in magnitude or direction from EVAR OKN even for tilts as large as 60 deg. OKAN following optokinetic stimulation around a tilted axis appeared normal in the horizontal plane (with respect to the animal) but was accompanied by a slowly emerging (time constant 4.1±2 s) vertical component, the effect of which was to vector the overall OKAN response onto the earth horizontal for tilts less than 20 deg. These results are compared with data from monkey and man and discussed in terms of the involvement of the velocity storage mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 71 (1988), S. 147-152 
    ISSN: 1432-1106
    Keywords: Eye movements ; Vestibulo-ocular reflex ; Otoliths ; Off-vertical-axis rotation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The response to off-vertical-axis rotation (OVAR) was measured in cats under circumstances in which the signals from the horizontal semicircular canals and otoliths were opposed. Opposition was achieved by sudden acceleration or deceleration during constant velocity OVAR. The degree of opposition was expressed as a canal/otolith ratio where a ratio of unity indicated agreement. For a canal/otolith ratio of 1, the OVAR gain (eye velocity/ stimulus velocity) was 0.73 (±0.13). The steady-state OVAR response was, however, reduced if the canals and otoliths were opposed. The reduction depended on the degree of opposition with a fall-off of 0.15 gain/(unit of canal/otolith ratio). These findings are discussed with respect to the central velocity store and the mechanism underlying the generation of the OVAR response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...