Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1463
    Keywords: Sexual steroids ; estrous cycle ; limbic forebrain ; striatum ; dopamine ; DOPAC ; tyrosine hydroxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In this work, we have studied the changes in the functional state of nigrostriatal (NSDA) and mesolimbic (MLDA) dopaminergic neurons during the estrous cycle of the female rat. The activity of tyrosine hydroxylase (TH), the turnover rate (Kt) after inhibition of dopamine (DA) synthesis and the ratio between the contents of this amine and its metabolite, L-3,4 dihydroxyphenylacetic acid (DOPAC), were used as indices of neuronal activity. The neuronal activity of NSDA neurons rose during estrous and declined during proestrous, as reflected by the values of Kt and DOPAC/DA ratio measured during both phases. Interestingly, the course of variations in striatal TH activity was similar, although retarded in relation to the changes in neuronal activity. Thus, TH activity was high during diestrous, whereas it was low during estrous. The activity of MLDA neurons was reduced during proestrous. This can be concluded from the decreased Kt and DOPAC/DA ratio measured in this phase and it was accompanied by a low TH activity. Thereupon, both Kt and TH activity increased during estrous. These results indicate the existence of physiological changes in the functional state of both dopaminergic systems during the ovarian cycle, which are partially different for each neuronal pathway. This supports the existence of a specific regulation, and not indiscriminate effects, by the hormones involved in this cycle, mainly estradiol and progesterone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Endocrine cells ; Gut ; Ontogeny ; Electron microscopy ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The endocrine cells present in the developing stomach of sea bass larvae have been characterized ultrastructurally. Only one endocrine cell type (type I) was found in the presumptive stomach of 9- and 12-day-old larvae, one (type II) and five (types III, IV, V, VI and VII) in the aglandular stomach of 32-, and of 39- to 46-day-old larvae, respectively, and five (types III, VIII, IX, X and XI) in the differentiated stomach of 55- and 60-day-old larvae. A maturation process was established for some of these cells. Types I, II and III and types IV and X were thought to be different maturational stages of the same endocrine cell type.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0568
    Keywords: Endocrine cells ; Gut ; Ontogeny ; Electron microscopy ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Several endocrine cell types were ultrastructurally characterized during the differentiation of the intestine and rectum of sea bass (Dicentrarchus labrax L.) larvae. Only one cell type (type I) was found in the posterior region of the undifferentiated gut of 5-day-old larvae (phase I). Types V and VI were found in both the intestine and rectum, types II, III and IV in the intestine, and types VII and VIII in the rectum of 9- and 12-day-old larvae (phase II), the rectum alone showing signs of functional differentiation. In phase III larvae, in which both the intestine and rectum were differentiated, types IX, X, XI, XII, XIII, XIV and XV were found in the intestine, only types X, XI and XII being seen in the rectum. Besides these, a new cell type, XVI, was observed in the intestine of 55- and 60-day-old larvae (phase IV), in which the digestive tract was completely differentiated. The endocrine cells appearing in phases I and II showed very scarce secretory granules and the ultrastructural features of undifferentiated cells. Some endocrine cell types in the earliest developmental stages were related to some of those found later. A maturational process of the endocrine cell types paralleled the differentiation of the intestine and rectum, with an apparent increase in the number of secretory granules accompanying organelle development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Endocrine cells ; Gut ; Ontogeny ; Regulatory peptides ; Immunocytochemistry ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 270 (1992), S. 339-352 
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Regulatory peptides ; Immunocytochemistry ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Ultrastructure ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Ultrastructure ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1435-1463
    Keywords: Prolactin ; striatum ; limbic forebrain ; dopamine ; DOPAC ; tyrosine hydroxylase ; D1 and D2 receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the present study we examined the effects of intracerebroventricular (i.c.v.) injections of prolactin (PRL) on the presynaptic activity and postsynaptic sensitivity of mesolimbic and nigrostriatal dopaminergic neurons. In addition, the effects of PRL onin vitro release of dopamine (DA) from perifused striatal fragments were examined. Tyrosine hydroxylase (TH) activity and D2 receptor density in the striatum decreased after i.c.v. PRL administration; this was accompanied by an increase in D2 receptor affinity. These effects occurred after i.c.v. administration of PRL to normoprolactinemic rats, although normally they did not appear after administration to animals with pituitary grafting-induced hyperprolactinemia. Thus, in these animals, i.c.v. PRL failed to decrease TH activity and D1 and D2 receptor densities to a significant extent. In the case of D2 receptors, this was probably due to the fact that pituitary grafting-induced hyperprolactinemia itself was able to reduce the density of this receptor. No changes were observed in DA or L-3, 4-dihydroxyphenylacetic acid (DO-PAC) contents after i.c.v. administration of PRL to both normo- and hyperprolactinemic animals. Basal and K+-evoked DA releasein vitro from perifused striatal fragments of normoprolactinemic rats were not affected by the addition of PRL, whereas this hormone enhanced K+-evoked DA release when added to perifused striatal fragments from hyperprolactinemic animals. In the limbic forebrain, i.c.v. administration of PRL to normoprolactinemic animals produced a decrease in DA and DOPAC contents and D1 receptor density. Interestingly, none of these effects appeared when PRL was injected to hyperprolactinemic animals. In summary, our results suggest a possible inhibitory role of PRL on the activity of both the nigrostriatal and mesolimbic dopaminergic neuronal systems. These inhibitory effects were reflected in the decreases elicited in a set of neurochemical parameters, indicating either presynaptic activity or postsynaptic sensitivity, after i.c.v.-administered PRL. This observation supports the hypothesis of a possible neuromodulatory role for an extrapituitary PRL on the activity of these neurons, although the fact that most of these effects did not appear when i.c.v. administration was performed in hyperprolactinemic rats also suggests that they are influenced by peripheral PRL levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1435-1463
    Keywords: Estradiol ; progesterone ; limbic forebrain ; tyrosine hydroxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In this work, we have studied the time-course of the effects of pharmacological administration of ovarian steroids on tyrosine hydroxylase (TH) activity in the limbic forebrain of ovariectomized rats. Administration of estradiol produced a late decrease in TH activity. This effect was found 24 hours after the last steroid injection, disappearing at 32 hours. It was antagonized by progesterone, since a single injection of this steroid to estradiol-pretreated rats reversed to control values the estradiol-induced decrease. Nevertheless, the administration of progesterone after estradiol treatment caused a short-time decrease in the limbic activity of TH, which was observed 4 hours after the last steroid injection, disappearing subsequently. On the other hand, the administration of progesterone alone produced a biphasic effect, with a reduction at 24 hours, followed by an increase at 32 hours. These effects were only observed in the animals non-treated with estradiol, disappearing with a previous treatment with estrogens. Hence, it can be concluded that both ovarian steroids may affect the limbic TH activity. Thus, estradiol produced a late inhibitory effect on the activity of this enzyme, which was antagonized by progesterone. Administration of the last one to estradiol-treated rats produced a short-time inhibitory effect, whereas its administration to non-treated rats produced a late biphasic effect (inhibition followed by stimulation), which was not observed in estradiol-treated rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...