Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PACS. 71.35.-y Excitons and related phenomena – 73.21.Fg Quantum wells  (1)
  • PACS. 73.21.Fg Quantum wells  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 23 (2001), S. 139-151 
    ISSN: 1434-6036
    Keywords: PACS. 71.35.-y Excitons and related phenomena – 73.21.Fg Quantum wells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Although the exciton in a quantum well is not a rigid ball but distords when its center of mass gets close to a surface, it is mathematically possible to write the exciton energy change from its bulk value as an effective decrease of the well width in which the center of mass would freely move. In the large well limit, the exciton dead layer defined this way is related to the third order term in the expansion of the exciton energy as a function of the inverse well width. A quite precise calculation of this exciton energy is thus necessary to obtain this dead layer. We present a new calculation which relies on a Born-Oppenheimer procedure to decouple the relative motion of the e-h pair from its center of mass motion. This is associated to a quite precise calculation of the relative motion energy, based on our recent work on the exact envelope function for confined motion. We predict that the dead layer increases with the exciton total mass in contradiction with previous results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 22 (2001), S. 89-98 
    ISSN: 1434-6036
    Keywords: PACS. 73.21.Fg Quantum wells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We present a new variationnal method for calculating the ground state energy of an electron bound to an impurity located in a quantum well. This method relies on an envelope function which is determined exactly from a formal minimization procedure. The obtained energies are lower by as much as 10% than the ones found by the widely used free electron envelope function. Their large width limits are reached with exponentially small corrections as they should. We also find that, except for narrow wells, the shape of these exact envelope functions strongly depends on the impurity position, being consequently quite different from the usual free electron ones. In order to discuss the improvements brought by our new procedure in the most striking way, we have used a model semiconductor quantum well with infinite barrier height and simplified band structure. Extensions can be made to finite barrier and more realistic band structures, following the same technique.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...