Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SANS  (2)
  • PACS. 83.10.Nn Polymer dynamics – 83.20.Di Microscopic (molecular) theories – 83.20.Jp Computer simulation  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 2 (2000), S. 3-30 
    ISSN: 1292-895X
    Keywords: PACS. 83.10.Nn Polymer dynamics – 83.20.Di Microscopic (molecular) theories – 83.20.Jp Computer simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Static properties of a single polymer fixed at one end and subjected to a uniform flow field are investigated for several polymer models: the Gaussian chain, the freely jointed chain, and the FENE (Finitely Extensible Nonlinear Elastic) chain. By taking into account first the excluded-volume interaction and subsequently also the hydrodynamic interaction, the polymer models are gradually completed and the relevance of each effect for the polymer deformation can be identified. Results from computer simulations of these bead spring chains are compared with analytical calculations using either the conformational distribution function or blob models. To this end, in contrast to the blob model with non-draining blobs introduced for a tethered polymer by Brochard-Wyart, we here develop also a model with free-draining blobs. It turns out that a limited extensibility of the polymer – described by nonlinear spring forces in the model – leads to a flow velocity dependence of the end-to-end distance, segment density, etc. which agrees with the power law predictions of the blob model only for very long chains and in a narrow range of flow velocities. This result is important for comparison with recent experiments on DNA molecules which turn out to be still rather short in this respect. The relative importance of finite extensibility, the excluded-volume effect, and hydrodynamic interactions for polymers in flow is not fully understood at present. The simulation of reasonably long chains becomes possible even when fluctuating hydrodynamic interactions are taken into account without employing averaging procedures by introducing efficient numerical approximation schemes. At medium velocity of the uniform flow the polymer is partially uncoiled and simulations show that the effects of excluded-volume and hydrodynamic interactions are position-dependent. Both are stronger near the free end than near the tethered end of the polymer. A crossover from a nearly non-draining polymer at small flow velocities to a free-draining almost uncoiled chain at large velocities is found in the simulations. Accordingly, models assuming the polymer to be composed of either free- or non-draining subunits, like the two blob models, cannot correctly describe the extension and shape of a tethered polymer in flow, and simple power laws for the polymer extension, etc. cannot be expected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 273 (1995), S. 1193-1200 
    ISSN: 1435-1536
    Keywords: Sodium di-n-pentyl-phosphate ; micelle ; SANS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Small angle neutron scattering has been used to elucidate the size and shape of a micelle in the sodium di-n-pentyl phosphate (DPP)-water system. The results are summarized as follows. For the DPP micelle, the aggregation number (n) depends on the concentration (n=12, at 7.0 wt% andn=15 at 10.0 wt%). The minimum micelle is spherical and has an aggregation numbern=7. For the DPP-micellar system, it can be assumed that micellar growth and variation from the spherical to probate shape occurs with an increase in concentration above the CMC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1536
    Keywords: Ethyl(n-octyl) phosphatemicelle ; SANS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Mixed-double chain anionic surfactants, barium- and lithium-salts of ethyl(n-octyl) phosphate (EOP), which are asymmetric in the molecular shape, and a series of identical chain di-n-alkyl phosphate lithium salts have been synthezized. The limiting partial molar volume of a PO 4 − group (23.43±0.41 cm3 mol−1) for use in small-angle neutron scattering analysis was determined by density measurements of a series of identical chain di-n-alkyl phosphate lithium salts. For lithium EOP-D2O system, a critical micellar concentration (2.3 wt%) was determined by31P NMR spectra. The micellar shape and size in the EOP-water binary system has been investigated by using small-angle neutron scattering (SANS) spectra. It has been found that the micelles of barium EOP in water have the shape of a prolate spheroid and aggregation numbers (n) equal to 48 at 23°C and 52 at 50°C. For the lithium EOP-micellar system, it has been found that the minimum micelle with an aggregation numbern=21 is spherical and micellar growth and variation from the spherical to the prolate shape might occur with an increase in concen tration above the CMC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...