Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Paragneisses  (2)
  • Tien Shan  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 642-659 
    ISSN: 1437-3262
    Keywords: Shear zones ; Granulites ; basic/ultrabasic complexes ; Paragneisses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Precambrian of Madagascar is divided into two sectors by the north-west trending sinistral Ranotsara shear zone, which continues in the Mozambique belt, probably as the Surma shear zone, and in Southern India as the Achankovil shear zone. South of Ranotsara six north-south trending tectonic belts are recognized that consist largely of granulite and high amphibolite facies paragneisses, phlogopite diopsidites, concordant granites and granulites. North of Ranotsara the central-northern segment is traversed by a north-trending axial 100–150 km wide dextral shear zone of probable Pan-African age, which was metamorphosed under granulite and high amphibolite facies conditions and which has reworked older basement. This shear zone continues across southern India as the Palghat-Cauvery shear zone. Major stratiform basic -ultrabasic complexes occur in the axial zone and in the basement to the west. Well preserved low grade continental margin-type sediments (quartzites, mica schists and stromatolitic marbles) of Kibaran age are present in western Madagascar. Two partly greenschist grade sedimentary groups lie unconformably on high grade basement in north-east Madagascar. Isotopic age data suggest the presence in Madagascar of Archaean, Early and Mid-Proterozoic crustal material that was extensively reworked in Pan-African times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 642-659 
    ISSN: 1437-3262
    Keywords: Shear zones ; Granulites ; basic/ultrabasic complexes ; Paragneisses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Precambrian of Madagascar is divided into two sectors by the north-west trending sinistral Ranotsara shear zone, which continues in the Mozambique belt, probably as the Surma shear zone, and in Southern India as the Achankovil shear zone. South of Ranotsara six north-south trending tectonic belts are recognized that consist largely of granulite and high amphibolite facies paragneisses, phlogopite diopsidites, concordant granites and granulites. North of Ranotsara the central-northern segment is traversed by a north-trending axial 100–150 km wide dextral shear zone of probable Pan-African age, which was metamorphosed under granulite and high amphibolite facies conditions and which has reworked older basement. This shear zone continues across southern India as the Palghat-Cauvery shear zone. Major stratiform basic -ultrabasic complexes occur in the axial zone and in the basement to the west. Well preserved low grade continental margin-type sediments (quartzites, mica schists and stromatolitic marbles) of Kibaran age are present in western Madagascar. Two partly greenschist grade sedimentary groups lie unconformably on high grade basement in north-east Madagascar. Isotopic age data suggest the presence in Madagascar of Archaean, Early and Mid-Proterozoic crustal material that was extensively reworked in Pan-African times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 406-416 
    ISSN: 1437-3262
    Keywords: Cenozoic tectonic ; Tien Shan ; Plate tectonics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Cenozoic deformation within the Tien Shan of central Asia has accommodated part of the post-collisional indentation of the Indian plate into Asia. Within the Urumgi—Korla region of the Chinese Tien Shan this occurred dominantly on thrusts, with secondary strike-slip faulting. The gross pattern of deformation is of moderate to steeply dipping thrusts that have overthrust foreland basins to the north and south of the range, the Junggar and Tarim basins, respectively. Smaller foreland basins lie within the margins of the range itself (Turfan, Chai Wo Pu, Korla and Qumishi basins); these lie in the footwalls of local thrust systems. Both the Turfan and the Korla basins contain major thrusts within them; they are complex foreland basins. Deformation has progressively affected regions further into the interior of the Junggar Basin, and propagated into the interiors of the intermontane basins. No unidirectional deformation front has passed across the Tien Shan in the Neogene and Quaternary. An Oligocene unconformity may indicate the time of the onset of the Cenozoic deformation, but most of the Cenozoic molasse has been deposited after the Palaeogene. The rate of deposition in basins next to the uplifted ranges has increased since the onset of deformation. There has been at least about 80 km of Cenozoic shortening across this part of the Tien Shan. Cenozoic shortening is greater in sections of the range further west; these are nearer to the northern margin of the Indian indenter. Cenozoic compression has reactivated structures created by the two late Palaeozoic collisions that created the ancestral Tien Shan. These Palaeozoic structures have exerted a strong control over the style and location of the Cenozoic deformation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...