Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 23 (1995), S. 322-331 
    ISSN: 1573-9686
    Keywords: Cell Adhesion ; Ligand-Coated Substrate ; Peel Test ; Membrane Mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Cell adhesion to substratum is often mediated by binding between cell surface receptors and substrate ligands. Substrates can be derivatized with different types and densities of ligands, but how substrate chemistry determines cellular function, such as adhesion strength, has not been demonstrated quantitatively. We employ a numerical methodology developed by Dembo and colleagues (9), who investigated membrane peeling under conditions of excess ligand density, to investigate the kinetics and strength of cell peeling from ligand coated surfaces for arbitrary ligand density. We show there are two asymptotic limits to peeling strength, as quantified by the critical tension: a high ligand density limit, where the critical tension is independent of ligand density and depends logarithmically on the receptor density; and a low ligand density limit, in which the critical tension depends logarithmically on the ligand density but is independent of receptor density. In between these limits, we numerically determine the critical tension. The critical tension is always a weak function of the dissociation constant between ligand and receptor. Furthermore, we show how the rate of peeling, for tensions above the critical tension, depends on ligand density and the mechanical properties of the receptor-ligand bonds. Interestingly, we illustrate when small increases in ligand density should alter cellular behavior, inducing a change to spreading onto a substrate from peeling up from a substrate. In total the predictions of this paper provide criteria for the design of ligand-coated substrate that provide for the proper adhesion strength and dynamics of detachment of cells from surfaces.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...