Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 19 (1998), S. 417-427 
    ISSN: 1573-0417
    Keywords: palynology ; Great Salt Lake ; climate ; Pliocene ; Pleistocene ; pluvial
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Pollen analysis of 5 wells drilled to bedrock in the Great Salt Lake, Utah, USA provide a record vegetation change over the last ca 13.5 Ma. Over 440 pollen samples have been counted. The longest record presented is for the mid-lake Bridge Well. Close-interval (3–10 Ka) sampling is presented for the upper Indian Cove well. Chronologic control is provided by identification volcanic tephra and by K/Ar, Ar/Ar, and fission-track dates. Ash determinations are based on electron microprobe analyses of iron, calcium, and other elements compared to Neogene ash data at the University of Utah. Sedimentation begins 38 Ma, with good pollen preservation is sediments younger than 13.5 Ma, and no obvious gaps in sedimentation after 6 Ma. The upland vegetation is desert from the late Miocene onward, with Sarcobatus and Ephedra pollen dominance during the late Miocene (〈5 Ma). Chenopodiaceae-Amaranthus, and Artemisia gain dominance during the Pliocene (5–2.5 Ma) and early Pleistocene. Pinus and Artemisia sharply increase in the late Pleistocene (0.75 Ma). The pollen of 'Tertiary exotics' (elm, hickory, Ostrya-Carpinus) is rare, but persists into the Pleistocene. Major vegetation – climatic events occur 3.7 and 2.5 Ma. Increased pollen concentration and sedimentation rate after 310 Ka are attributed to the diversion of the Bear River into the Bonneville Basin. Glacial-interglacial cycles appear as alternations of Chenopodiaceae-Amaranthus (interglacial) vs Artemisia (glacial) during the Pliocene and early Pleistocene, and of Cupressaceae, Sarcobatus, and Gramineae (interglacial) vs Picea, Abies, and Pseudotsuga (glacial) during the late Pleistocene. Pluvial cycles are separated by interpluvial peaks in percentages of wetground and aquatic types. Six interpluvials are indicated during the last 759 Ka, with pluvial cycles of ca 100 Ka cyclicity back to 1.5 Ma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...