Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 62 (1986), S. 451-458 
    ISSN: 1432-1106
    Keywords: Space representation ; Sensorimotor integration ; Pointing movements ; Motor control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The control of pointing arm movements in the absence of visual guidance was investigated in unpracticed human subjects. The right arm grasped a lever which restricted the movement of the right index fingertip to a horizontal arc, centered between the axes of eye rotation. A horizontal panel directly above the arm prevented visual feedback of the movement. Visual stimuli were presented in discrete positions just above panel and fingertip. A flag provided visual feedback on fingertip position before each pointing movement (Exp. A and B), or before a movement sequence (Exp. C). 2. When subjects pointed from straight ahead to eccentric stimulus positions (Exp. A), systematic and variable pointing errors were observed; both kinds of errors increased with stimulus eccentricity. When subjects pointed from 30 deg left to stimuli located further right (Exp. B), errors increased with stimulus position to the right. Taken together, these findings suggest that pointing accuracy depends not primarily on stimulus position, but rather on required movement amplitude. 3. When subjects performed sequences of unidirectional movements (Exp. C), systematic and variable errors increased within the sequence. A quantitative analysis revealed that this increase can be best described as an accumulation of successive pointing errors. 4. We conclude that both findings, error increase with amplitude, and accumulation of successive errors, when considered together strongly support the hypothesis that amplitude, rather than final position, is the controlled variable of the investigated movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 64 (1986), S. 476-482 
    ISSN: 1432-1106
    Keywords: Sensorimotor interaction ; Visual localization ; Pointing movements ; Retinal eccentricity ; Extraretinal signals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In human subjects, we investigated the accuracy of goal-directed arm movements performed without sight of the arm; errors of target localization and of motor control thus remained uncorrected by visual feedback, and became manifest as pointing errors. Target position was provided either as retinal eccentricity or as eye position. By comparing the results to those obtained previously with combined retinal plus extraretinal position cues, the relative contribution of the two signals towards visual localization could be studied. When target position was provided by retinal signals, pointing responses revealed an over-estimation of retinal eccentricity which was of similar size for all eccentricities tested, and was independent of gaze direction. These findings were interpreted as a magnification effect of perifoveal retinal areas. When target position was provided as eye position, pointing was characterized by a substantial inter-, and intra-subject variability, suggesting that the accuracy of localization by extraretinal signals is rather limited. In light of these two qualitatively different deficits, possible mechanisms are discussed how the two signals may interact towards a more veridical visual localization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...