Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer-aided materials design 3 (1996), S. 341-350 
    ISSN: 1573-4900
    Keywords: Poly(lactide) ; Alternating propylene-CO-copolymer ; Stereocomplex ; Powder diffraction ; Force-field simulation ; Poly(ethyleneglycol) ; AB block copolymers ; Atomic force microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Both (−)- and (+)-poly(lactide) (PLA) crystallize into a stereocomplex with a melting point that is 50 °C higher than that of crystals of the same-handed enantiomers. According to Boyer et al. [Polym. Prepr., 36 (1995) 87] and Jiang et al. [J. Am. Chem. Soc., 117 (1995) 7037], alternating isotactic propylene-CO-copolymers (P(P-alt-CO)) also form a stereocomplex with a higher melting point (60 °C). Force-Field-simulated structures for both polymer systems were found to agree well with X-ray data, irrespective of whether they had a chiral or racemic packing. The almost similar results for both stereocomplexes indicate that they might form a mixed stereocomplex of (−)-PLA and (+)-P(P-alt-CO). In acetonitrile, both enantiomers of an AB block copolymer derivative, poly(lactide)-poly(ethyleneglycol) (PLA-PEG); were found to crystallize exclusively into a racemic lattice. The influence of racemic packing on self-assembly of the two-block copolymer was analyzed by atomic-force microscopy. An equimolar mixture of (−)- and (+)-PLA-PEG formed spherical particles through stereocomplexation, in contrast to chiral block copolymers that formed large crystal needles and long rods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...