Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physiological and Molecular Plant Pathology 44 (1994), S. 273-288 
    ISSN: 0885-5765
    Keywords: [abr] BABA; DL-3-amino-n-butyric acid ; [abr] INA; 2,6-dichloroisonicotinic acid ; [abr] PR; pathogenesis-related ; [abr] R-BABA; (R)enantiomer of 3-amino-n-butyric acid ; [abr] S-BABA; (S)enantiomer of 3-amino-n-butyric acid ; [abr] SA; sodium salicylate ; [abr] SAR; systemic-acquired resistance ; [abr] TMV; tobacco mosaicvirus
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physiological and Molecular Plant Pathology 44 (1994), S. 273-288 
    ISSN: 0885-5765
    Keywords: [abr] BABA; DL-3-amino-n-butyric acid ; [abr] INA; 2,6-dichloroisonicotinic acid ; [abr] PR; pathogenesis-related ; [abr] R-BABA; (R)enantiomer of 3-amino-n-butyric acid ; [abr] S-BABA; (S)enantiomer of 3-amino-n-butyric acid ; [abr] SA; sodium salicylate ; [abr] SAR; systemic-acquired resistance ; [abr] TMV; tobacco mosaicvirus
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 1031-1037 
    ISSN: 0887-6266
    Keywords: poly(ethylene) ; fiber ; synergism ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Retardation of dissolution of highly oriented polyethylene fibers exposed to solvent under a constant tensile force has been investigated in comparison to free conditions. Beyond a critical value of the applied force, the time for dissolution increases sharply by several orders of magnitude. This effect is significant only in fibers with high initial orientation. It is attributed to the existence of a network of oriented crystallites. We have utilized this effect for surface modification of highly oriented PE fibers, by exposure to solvent at different temperatures and applied stress. At a relatively low load the action of the solvent displays pronounced effects: roughening of the fiber surface, formation of a nonoriented crystalline phase, enhancement of adhesion to epoxy resin with some loss of strength. ©1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 1055-1067 
    ISSN: 0887-6266
    Keywords: hydrogels, polyacrylamide, characterization of inhomogeneity in ; polyacrylamide, inhomogeneous hydrogels of ; gels of polyacrylamide in water, physical and structural characteristics of ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The physical and structural properties of acrylamide gels have been characterized by osmotic deswelling, mechanical compression, and x-ray scattering. These properties vary considerably with the concentration of the crosslinking agent bisacrylamide, at fixed total monomers concentration (10% wt/wt water). In particular, changes in the properties appear more prominent at a crosslinking level of about 5-6% (wt bisacrylamide/wt monomers). The compression modulus of as-prepared and swollen gels passes through a maximum at this level of crosslinking. The swelling pressure curves can be separated into osmotic and elastic contributions of the gel network. The elastic part exhibits similar behavior to the compression modulus. The scaling of the osmotic part with the gel concentration varies with the degree of crosslinking, changing from 2.33 to 3.09. This indicates that the solvent power of water decreases with increasing crosslinking level, towards Φ conditions. The scattering patterns from the gels have been analyzed as arising from additive contributions from a homogeneous gel matrix, and embedded heterogeneities having a higher crosslinking density. These heterogeneities become much more prominent at the same level of crosslinking about 5-6%. Hysteresis observed in the sorption/desorption behavior of polyacrylamide gel suggests that further irreversible structural changes may occur at water activities lower than probed by osmotic deswelling. © 1992 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 19 (1981), S. 599-608 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ordering of polystyrene (PS) molecules in thin films collapsed from toluene solutions onto a glass substrate by dip coating is studied in relation to the polymer molecular weight and its distribution. The degree of ordering of chain elements is deduced from measurements of film birefringence, between the normal and parallel directions to the film surface, as a function of film thickness. A technique has been developed for measuring this birefringence by monitoring the intensity of laser light passing through the film, as a function of the angle of incidence. Films of monodisperse low-molecular-weight PS exhibit high ordering very close to the substrate, but this ordering decays within 1 μm from the glass surface. Films of monodisperse high-molecular-weight PS, on the other hand, exhibit a much smaller, but very long-range degree of order. In a blend of PS of these two molecular weights, as well as in a polydisperse sample, these effects appear in tandem. The long-range ordering effect, evident in the 100,000 molecular weight polystyrene films, is much smaller in magnitude in lower-molecular-weight films, reflecting probably the importance of chain entanglements.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 19 (1981), S. 1255-1267 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Films of polystyrene-poly(vinylmethyl ether) blends of various compositions are formed by a dip-coating procedure, the thickness of the film being controlled by the concentration of the solution. The substrates used are glass and gold. The phase separation process is followed by a laser light scattering experiment in which the total forward scattering intensity is monitored as a function of temperature. Morphological examination shows that phase separation occurs by a spinodal decomposition mechanism. A thickness effect on the phase separation temperature is noticeable when film thickness is smaller than 1 μm. This effect is substrate dependent. In all films formed on gold the spinodal temperature increases as film thickness decreases. Films formed on glass exhibit a destabilizing effect on decreasing film thickness. This effect is slight in films of composition poorer in polystyrene than the critical composition, and is enhanced in films richer in polystyrene. The stabilizing effect of decreasing the thickness of films formed on the gold substrate is considered to reflect mainly a purely geometrical effect. The decreasing dimensionality is shown by simple theoretical considerations to increase the phase-separation temperature. However, the phase separation behavior of thin films on glass appears to be the result of two kinds of substrate-polymer interactions in addition to the geometrical effect: (a) electrostatic interaction of the charged glass surface (a destabilizing effect at all film compositions) and (b) selective adsorption of polystyrene on glass.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Acta Polymerica 44 (1993), S. 273-278 
    ISSN: 0323-7648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The microfibrils and the microfibrillar network in poly(p-phenylene terephthalamide) (PPTA) fibers formed during the coagulation from a monodomain lyotropic fiber are stabilized by critical point drying and characterized by electron microscopy and small angle X-ray scattering. The diameter of the microfibrils varies from 20 to 49 nm depending on the PPTA concentration in the lyotropic solution used for the spinning. A formation mechanism for the microfibrils and the microfibrillar network is suggested. During the coagulation, the spinodal decomposition (phase separation) is assumed to occur before the crystallization (phase transition), resulting in the formation of the microfibrils. The formation of the microfibrillar network is considered to be related to the misorientation of macromolecules and the density fluctuation in the cross-section of the filament during spinodal decomposition.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...