Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Twenty-one fractions have been demonstrated in each of 15 different commercially available heparins subjected to electrofocusing. These fractions show a molecular-weight range from 3000 to 37,500 with a constant interval between molecular weights. Degradation of each fraction by purified enzymes of Flavobacterium heparinum yielded identical end products, suggesting chemical identity. Only fractions with a molecular weight of 7000 and up had significant anticoagulant activities.The phenomenon of electrofocusing of mucopolysaccharides is dependent upon pH, molecular weight, and ampholyte availability. Chemical composition of the mucopolysaccharide is also an essential factor since N- and O-desulfation of heparin markedly changed the focalization pattern.The pattern produced when heparin is subjected to electrofocusing is not duplicated by any other naturally occurring acidic mucopolysaccharide tested. Heparitin sulfate D shows some similarities to heparin and it is probable that heparitin sulfate D is a normal contaminant of heparin preparations (this assumption is supported by molecular-weight and anticoagulant activity determinations).The technique is specific and reproducible and unequivocally distinguishes heparin from other acid mucopolysaccharides.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 17 (1983), S. 345-357 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 μCi labeling dose was taken up by 1.5 × 106 cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37°C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 18 (1992), S. 187-198 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The surface compositional characteristics of two palladium metal electrode inks, air-dried on barium titanate (BaTiO3) dielectric ceramic substrates, have been studied using x-ray photoelectron spectroscopy (XPS). It is found the exposure of the inks to the x-ray beam during the time of analysis required for data acquisition causes surface damage. Changes in the C 1s and O 1s regions in particular, which reflect modifications to the organic, polymeric binder materials present in the inks, have been investigated as a function of x-ray exposure time, incident ploton energy and beam power levels. Additional complexity in the C 1s spectral envelope that cannot be explained in terms of the expected contributing organic functionalities is observed. This is explained in terms of a difference in charging effects experienced by adventitious carbon species and those intimately associated with palladium metal centres.The degree of damage induced by the x-ray beam under specific operating conditions has been compared also with that caused by exposure of the surfaces to an electron beam. Indications of the time scales and operating parameters for conducting XPS experiments on the unmodified surface, prior to surface degradation, are given.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 18 (1992), S. 199-209 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The cellulose derivatives ethyl cellulose and ethyl-hydroxyethyl cellulose (EHEC) have been studied by XPS in the form of solvent-cast films. All the films, as well as a sample of cellulose used as a standard material, show significant surface degradation on irradiation in the time period consistent with XPS data acquisition. Under the experimental conditions employed here the four materials studied behave similarly, in that a reaction occurs in the cellulose skeleton, resulting in dehydroxylation of some of the pyranose units in the surface layers, with concomitant elimination of molecules of water.An infrared (IR) analysis of the ethyl cellulose and high-molicular-weight EHEC films indicates the presence of a strong carbonyl band, no evidence for which is found in the XPS spectra. However, other features of the IR spectra support the proposed dehydroxylation mechanism. The origin of this inconsistency is nuclear but may be attributable to either differences in the surface and bulk degradation products formed or to the detection differences of the XPS and IR techniques.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 8 (1952), S. 651-656 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 7 (1951), S. 105-120 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Collagen exhibits a low angle x-ray diffraction pattern corresponding to a spacing of about 650 A. On denaturation (shrinking) this pattern disappears and does not return, regardless of how the material may be treated subsequently. It has been found that, when collagen tendons are stretched taut in a clamp, immersed in water, and then subjected to temperatures above the shrink temperature, the intensity of the low angle pattern diminishes appreciably. This has been interpreted as a decrease in the concentration of the structure which gives rise to the pattern and was assumed to be due to a melting of the crystalline structure of collagen. At constant temperature (above the shrink temperature), the low angle pattern continually decreases in intensity with increased shrinkage until it disappears completely. The extent to which the sample must be shrunk before the pattern disappears is dependent upon the temperature and increases with decreasing temperature.On analyzing the data quantitatively, using the theories of crystallization for linear polymers developed by Flory, it was possible to calculate a heat and entropy of shrinkage. The values obtained for these quantities indicate that the fusion is a stepwise process involving very few amino acid residues in each step (perhaps only one or two residues).Experiments were carried out on collagen shrunk in water and in formamide, as well as on formaldehyde tanned collagen shrunk in water. It was found that the heat and entropy of shrinkage apparently decrease with increasing tendency toward swelling. Thus the heat of shrinkage for formaldehyde tanned collagen is greater than for untanned, and the heat of shrinkage for native collagen is greater in water than in formamide.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 9 (1952), S. 315-325 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thermally contracted collagen, when swollen in appropriate media, obeys rubber elasticity theory. On the basis of the measurements which were made, it was possible to establish that the material behaves as if it were a network polymer crosslinked by covalent bonds. However, the chemical nature of these crosslinks is not known. The molecular weight of the chain between points of crosslinking is approximately 55,000. This corresponds to the molecular weight calculated for collagen from x-ray data (60,600), assuming the c axis of the unit cell to be the characteristic 625 A. spacing.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...