Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 136 (1993), S. 253-262 
    ISSN: 1432-1424
    Keywords: Pore sizes ; Epithelial junctions ; Necturus gallbladder ; Fluid transport ; Convective channels ; Reflexion coefficient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract During isotonic fluid flow, Necturus gallbladder epithelium mediates net fluxes of paracellular probes by a convective process. We show here that the paracellular system is modeled by permeation through three populations of channels: (i) convective parallel-sided ones of width 7.7 nm (ii) small diffusive ones of radius ∼0.6 nm, and (ii) large diffusive ones of radius exceeding 50 nm. The reflexion coefficient of the convective channels is very low and the calculated osmotic flow rate is close to zero when compared with the observed fluid absorptive rate of 2 x 10−6 cm/sec. Analysis reveals that the convective channels behave as though closed to back-diffusion of probes; if this is due to solvent drag then very high fluid velocities are required, acting through minute areas. There are no transjunctional gradients that could drive the flow, and so the fluid must be propelled through the channel by components of the junction. We propose a mechanism based upon an active junctional peristalsis which allows discrimination on the basis of molecular size, in which the channels are always occluded at some point and so back-diffusion cannot occur. There is no local gradient of salt distal to the junctions and therefore the osmotic permeability of the membranes is irrelevant. High fluid velocities are not required, and the flow can occur over a substantial fraction of the junction. The mechanism must involve motile and contractile elements associated with the junction for which there is already considerable evidence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...