Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Structural chemistry 4 (1993), S. 289-298 
    ISSN: 1572-9001
    Keywords: Hydration ; scale factors ; ab initio ; force constants ; glycine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We obtain scale factors for three glycinate-nH2O ab initio force fields, using the 4–31G basis set, that can be used in building a scaled quantum mechanical force field for alanine and, subsequently, for peptides in aqueous solutions. Force constants from the fully optimized glycinate-nH2O supermolecules were scaled by using experimentally determined vibrational frequencies of glycine in water at pH 13. Similar calculations were performed for methylamine and acetate. Scale factors for the stretching modes of acetate are within 2% of the related scale factors for glycinate. The scale factor for the NH2 scissor mode in methylamine is also in agreement with that of glycinate. Changes in the scale factors as a function of the number of hydrating water molecules were also similar between glycinate and acetate. Amine groups showed relatively small changes. Scale factors for glycinate with no hydrating molecules were extrapolated from the supermolecule results, since the optimized structure of isolated glycinate obtained with the 4–31G basis set yielded one imaginary frequency. Good agreements between calculated and experimental frequencies for glycinate, acetate, and methyl amine were obtained for each set of scale factors. Scaling appears to compensate for the systematic effects of hydration on force constants, making it possible to obtain reliable frequency predictions for amino acids in water without resorting to expensive super-molecule calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 3 (1996), S. 69-72 
    ISSN: 1573-3904
    Keywords: Peptide ; Secondary structure ; Raman ; CD ; Potassium-channel toxin ; Sea anemone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Sea anemones possess small K-channel-blocking peptides about the same size as the scorpion K-channel toxins. We have estimated the secondary structure content (33% helix, 26% β-sheet) of one of these toxins, ShK toxin, using CD, Raman, and FTIR spectroscopy. A hypothetical 3D structure of the peptide core has been constructed using secondary structure and disulfide-linkage constraints; a single helical segment running from Ala14 through Leu25 is predicted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...