Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proliferation  (1)
  • 1
    ISSN: 1279-8509
    Keywords: Erythropoiesis ; Thyroid hormone ; Retinoic acid ; Differentiation ; Proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Receptors for L-triiodothyronine (T3) and all-trans retinoic acid (ATRA) are DNA-binding proteins that can form transcriptionally active heterodimers. In this study, we sought whether T3 and ATRA could cooperate to modulate human and mouse erythropoiesis in vitro. Effects of T3 and ATRA were first assessed on burst forming unit-erythroid (BFU-E) proliferation and differentiation in semi-solid cultures. T3 did not alter the cloning efficiency of BFU-E but it decreased the production of colony forming unit-erythroid (CFU-E) during the course of BFU-E development. In contrast to T3, ATRA inhibited the early steps of BFU-E proliferation. ATRA and T3 acted in a dose-dependent manner with optimal effects at 10−6 M and 10−8 M, respectively. Furthermore, T3 and ATRA used in combination had more pronounced effects than when used alone, but only at their respective optimal concentrations, indicating that these effects were additive rather than synergistic. Similar results were obtained with unfractionated mouse bone marrow cells or human CD34+ bone marrow cells, suggesting that the effects of T3 or ATRA were not mediated by accessory cells. This study was extended to the mouse IL-3-dependent NFS-60 cells that can differentiate in vitro into mature erythroid cells in response to erythropoietin (Epo). When used alone, neither T3 nor ATRA could affect NFS-60 cell proliferation in response to Epo; however, T3 and ATRA had an anti-proliferative effect when used together. In addition, T3 dramatically reduced the proportion of hemoglobinized colonies in Epo-stimulated cultures of NFS-60 cells. Furthermore, ATRA, but not T3, could inhibit the IL-3-dependent proliferation of NFS-60 cells. Altogether these data suggest that T3 and ATRA can cooperate in modulating in vitro erythropoiesis although having individual effects at different but overlapping steps along the erythroid pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...