Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 41 (1995), S. 225-231 
    ISSN: 1040-452X
    Keywords: Insulin ; Pinocytosis ; Embryo ; Protein ; Regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Fluid phase endocytosis in mouse blastocysts was characterized using the fluid phase marker, 3H-dextran, which did not bind to the membrane. This nonsaturable uptake occurred via an energy-requiring process, with only 20% accountable by diffusion as indicated by analysis at 4°C. Insulin stimulated uptake of 3H-dextran by 30% (P〈0.05) over the first hr. The rate of uptake then decreased in both control and insulin-treated blastocysts. However, by 2 hr, insulin-treated blastocysts contained 38% more 3H-dextran (38%; P〈0.01) than control blastocysts. Incubation of blastocysts in protein-free medium increased 3H-dextran uptake to a rate equivalent to 12% of the blastocyst volume/min (1,500 ± 240 pliter/hr), compared to 4.5% and 1.5% of the blastocyst volume/min for uptake in the presence of 0.1 g BSA/I and 10 g BSA/I, respectively. Confocal microscopic studies of fluorescently labelled dextran uptake in blastocysts, cultured in the absence of BSA, showed an increase in weak fluorescence labelling in the trophectoderm cells of blastocysts, compared to blastocysts cultured in the presence of BSA. There was no diffusion of fluorescence label into the blastocoel cavity. This is consistent with fluid being endocytosed, possibly by a large number of small pinocytic vesicles. Thus fluid-phase endocytosis in blastocysts is stimulated by insulin, increasing the delivery of nutrient-containing fluid into blastocysts. In the absence of protein, embryos also increase fluid uptake, possibly in an attempt to maintain the rate of supply of protein nutrient to trophectoderm cells. An analysis of the rate of protein delivery in both adsorbed and dissolved phases is presented, which reveals the potential for significant contributions of both phases of endocytosis to blastocyst metabolism in vivo. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...